Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-28T08:27:03.287Z Has data issue: false hasContentIssue false

Simultaneous rational approximations to certain algebraic numbers

Published online by Cambridge University Press:  24 October 2008

A. Baker
Affiliation:
Trinity College, Cambridge

Extract

It is generally conjectured that if α1, α2 …, αk are algebraic numbers for which no equation of the form

is satisfied with rational ri not all zero, and if K > 1 + l/k, then there are only finitely many sets of integers p1, p2, …, pkq, q > 0, such that

This result would be best possible, for it is well known that (1) has infinitely many solutions when K = 1 + 1/k. † If α1, α2, …, αk are elements of an algebraic number field of degree k + 1 the result can be deduced easily (see Perron (11)). The famous theorem of Roth (13) asserts the truth of the conjecture in the case k = 1 and this implies that for any positive integer k, (1) certainly has only finitely many solutions if K > 2. Nothing further in this direction however has hitherto been proved.‡

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Baker, A.Rational approximations to certain algebraic numbers. Proc. London Math. Soc. 14 (1964), 385398.Google Scholar
(2)Baker, A.Rational approximations to ∛2 and other algebraic numbers. Quart. J. Math. Oxford 15 (1964), 375383.Google Scholar
(3)Baker, A.Approximations to the logarithms of certain rational numbers. Acta Arith. 10 (1964), 315323.Google Scholar
(4)Cassels, J. W. S.An introduction to the geometry of numbers (Berlin, Göttingen, Heidelberg, 1959).Google Scholar
(5)Gelfond, A. O.On the simultaneous approximations of algebraic numbers by rational fractions. Izv. Akad. Nauk, SSSR (Ser. mat.) 5 (1941), 99104 (in Russian).Google Scholar
(6)Hasse, H.Simultane Approximation algebraischer Zahlen durch algebraische Zahlen. Monatsh. Mat. 48 (1939), 205225.Google Scholar
(7)Landau, E.Handbuch der Lehre von der Verteilung der Primzahlen (Leipzig and Berlin, 1909).Google Scholar
(8)Mahler, K.Ein Beweis des Thue-Siegelschen Satzes über die Approximation algebraischer Zahlen für binomische Gleichungen. Math. Ann. 105 (1931), 267276.CrossRefGoogle Scholar
(9)Mahler, K.On the approximation of logarithms of algebraic numbers. Philos. Trans. Roy. Soc. London, Ser. A 245 (1953), 371398.Google Scholar
(10)Peck, L. G.Simultaneous rational approximations to algebraic numbers. Bull. American Math. Soc. 67 (1961), 197201.Google Scholar
(11)Perron, O.Über diophantische Approximationen. Math. Ann. 83 (1921), 7784.Google Scholar
(12)Rosser, B.Explicit bounds for some functions of prime numbers. American J. Math. 63 (1941), 211232.Google Scholar
(13)Roth, K. F.Rational approximations to algebraic numbere. Mathematika 2 (1955), 120.Google Scholar
(14)Schmidt, W. M.Über simultane Approximation algebraischer Zahlen durch rationale. Acta Math. 114 (1965), 159206.Google Scholar
(15)Schneider, Th.Einführung in die transzendenten Zahlen (Berlin, Göttingen, Heidelberg, 1957).Google Scholar
(16)Siegel, C. L.Approximation algebraischer Zahlen. Math. Zeit. 10 (1921), 173213.Google Scholar
(17)Skolem, Th.Einige Sätze über gewisse Riehenentwicklungen und exponentiale Beziehungen mit Anwendung auf diophantische Gleichungen. Oslo Vid. Akad. Skrifter, I (1933), no. 6.Google Scholar
(18)Skolem, Th.Diophantische Gleichungen (New York, 1950). Reprinted from Ergeb. Math. V.Google Scholar