Skip to main content Accessibility help
×
Home
Hostname: page-component-77ffc5d9c7-6tv98 Total loading time: 0.341 Render date: 2021-04-22T21:23:09.875Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Elliptic functions, theta function and hypersurfaces satisfying a basic equality

Published online by Cambridge University Press:  01 January 1999

BANG-YEN CHEN
Affiliation:
Department of Mathematics, Michigan State University, East Lansing, MI 48824, U.S.A. e-mail: bychen@math.msu.edu & jyang@math.msu.edu
JIE YANG
Affiliation:
Department of Mathematics, Michigan State University, East Lansing, MI 48824, U.S.A. e-mail: bychen@math.msu.edu & jyang@math.msu.edu

Abstract

In previous papers [4, 6], B.-Y. Chen introduced a Riemannian invariant δM for a Riemannian n-manifold Mn, namely take the scalar curvature and subtract at each point the smallest sectional curvature. He proved that every submanifold Mn in a Riemannian space form Rm(ε) satisfies: δM[les ][n2(n−2)]/ 2(n−1)H2+[half](n+1)(n−2)ε. In this paper, first we classify constant mean curvature hypersurfaces in a Riemannian space form which satisfy the equality case of the inequality. Next, by utilizing Jacobi's elliptic functions and theta function we obtain the complete classification of conformally flat hypersurfaces in Riemannian space forms which satisfy the equality.

Type
Research Article
Copyright
Cambridge Philosophical Society 1999

Access options

Get access to the full version of this content by using one of the access options below.

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 16 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 22nd April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Elliptic functions, theta function and hypersurfaces satisfying a basic equality
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Elliptic functions, theta function and hypersurfaces satisfying a basic equality
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Elliptic functions, theta function and hypersurfaces satisfying a basic equality
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *