Skip to main content Accessibility help

Seasonality, Climate Cycles and Body Size Evolution

  • T. A. Troost (a1), J. A. van Dam (a2) (a3), B. W. Kooi (a4) and E. Tuenter (a5)


The seasonality hypothesis states that climates characterized by large annual cycles select for large body sizes. In order to study the effects of seasonality on the evolution of body size, we use a model that is based on physiological rules and first principles. At the ecological time scale, our model results show that both larger productivity and seasonality may lead to larger body sizes. Our model is the first dynamic and process-based model to support the seasonality hypothesis and hence demonstrates the importance of basing models on physiological processes. We focus not only on variability at the ecological time scale, but also on the temporal variations in seasonality existing at geological time scales. A particularly strong forcing of seasonality exists on the scale of 20,000-400,000 years, the scale of Milankovitch cycles. Therefore, we simulated the evolutionary response of body size to a Milankovitch-type of forcing of climate and food density. Results illustrate that for a given level of investment in reserves body size may track climatic cycles, and that below a certain seasonality threshold the body size will decrease rapidly, leading to extinction.


Corresponding author


Hide All
[1] K. G. Ashton. Body size variation among mainland populations of the western rattlesnake (Crotalus viridis). Evolution, (2001), 55(12):2523–2533.
[2] Boyce, M. S.. Climatic variability and body size variation in the muskrats (Ondatra zibethicus) of North America. Oecologia, 36 (1978), 119.
[3] Boyce, M. S.. Seasonality and patterns of natural selection for life histories. The American Naturalist, 114 (1979), No. 4, 569583.
[4] Chown, S. L., Klok, C. J.. Altitudinal body size clines: latitudinal effects associated with changing seasonality. Ecography, 26 (2003), No. 4, 445455.
[5] Cohen, D., Parnas, H.. An optimal policy for the metabolism of storage materials in unicellular algae. J. theor. Biol., 56 (1976), 118.
[6] Dickman, C. R., Mahon, P. S., Masters, P., Gibson, D. F. Long-term dynamics of rodent populations in arid australia: the influence of rainfall. Wildlife Research, 26 (1999), No. 4, 389403.
[7] Dieckmann, U.. Can adaptive dynamics invade? Trends in Ecology and Evolution, 12 (1997), 128131.
[8] Dieckmann, U., Law, R.. The mathematical theory of coevolution: a derivation from stochastic processes. J. Math. Biol., 34 (1996), 579612.
[9] Dunsbrack, R. L., Ramsay, M. A.. The allometry of mammalian adaptations to seasonal environments - a critique of the fasting endurance hypothesis. OIKOS, 66 (1993), No. 2, 336342.
[10] Ferguson, S. H.. The effects of productivity and seasonality on life history: comparing age at maturity among moose (Alces alces) populations. Global Ecology and Biogeography, 11 (2002), No. 4, 303312.
[11] N. R. French, D. M. Stoddart, B. Bobek. Patterns of demography in small mammal populations. In F. B. Golley, K. Petrusewicz, and L. Ryszkowski, editors, Small mammals: their productivity and population dynamics, pages 73–102. Cambridge University Press, Cambridge, 1975.
[12] Geritz, S. A. H., Kisdi, É., Meszéna, G., Metz, J. A. J.. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evolutionary Ecology, 12 (1998), 3557.
[13] Geritz, S. A. H., Metz, J. A. J., Kisdi, É., Meszéna, G.. Dynamics of adaptation and evolutionary branching. Physical Review Letters, 78 (1997), 20242027.
[14] Geritz, S. A. H., van der Meijden, E., Metz, J. A. J.. Evolutionary dynamics of seed size and seedling competitive ability. Theoretical Population Biology, 55 (1999), 324343.
[15] Hays, J. D., Imbrie, J., Shackleton, N. J.. Variations in the earth's orbit: Pacemaker of the ice ages. Science, 194 (1976), 11211132.
[16] Hilgen, F. J., Krijgsman, W., Langereis, C. G., Lourens L. J., Santarelli A., W. J. Zachariasse. Extending the astronomical (polarity) time scale into the Miocene. Earth Planet. Sci. Lett., 136 (1995), No. 3, 496510.
[17] K. L. Kirk. Life-history responses to variable environments: starvation and reproduction in planctonic rotifers. Ecology, (1997), 78(2):434–441.
[18] B. W. Kooi, S. A. L. M. Kooijman. Population dynamics of rotifers in chemostats. Nonlinear Analysis, Theory, Methods & Applications, 30 (1997), No. 3, 1687–1698.
[19] Kooi, B. W., Kooijman, S. A. L. M.. Discrete event versus continuous approach to reproduction in structured population dynamics. Theoretical Population Biology, 56 (1999), No. 1, 91105.
[20] Kooi, B. W., Troost, T. A.. Advantages of storage in a fluctuating environment. Theoretical Population Biology, 70 (2006), No. 4, 527541.
[21] S. A. L. M. Kooijman. Dynamic Energy and Mass Budgets in Biological Systems. Cambridge University Press, Cambridge, 2000.
[22] Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., Levrard, B.. A long-term numerical solution for the insolation quantities of the earth. Astronomy & Astrophysics, 428 (2004), 261285.
[23] Lehman, S. M., Mayor, M., Wright, P. C.. Ecogeographic size variations in sifakas: a test of the resource seasonality and resource quality hypotheses. American Journal of Physical Anthropology, 126 (2005), No. 3, 318328.
[24] Lieth, H.. Primary production: terrestrial ecosystems. Human Ecology, 1 (1973), 303332.
[25] Lima, M., Keymer, J. E., Jaksic, F. M.. El Niño-Southern oscillation-driven rainfall variability and delayed density dependence cause rodent outbreaks in Western South America: linking demography and population dynamics. The American Naturalist, 153 (1999), No. 15, 476491.
[26] Lindsey, C. C.. Body sizes of poikilotherm vertebrates at different latitudes. Evolution, 20 (1966), 456465.
[27] Lindstedt, S. L., Boyce, M. S.. Seasonality, fasting endurance, and body size in mammals. The American Naturalist, 125 (1985), 873878.
[28] Madson, T., Shine, R.. Rainfall and rats: climatically-driven dynamics of a tropical rodent population. Austral Ecology, 24 (1999), No. 1, 8089.
[29] Meiri, S., Dayan, T., Simberloff, D.. Biogeographical patterns in the Western Palearctic: the fasting-endurance hypothesis and the status of Murphy's rule. Journal of Biogeography, 32 (2005), 369375.
[30] J. A. J. Metz, S. A. H. Geritz, G. Meszéna, F. J. A. Jacobs, J. S. van Heerwaarden. Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In: S. J. van Strien, S. M. Verduyn Lunel, editors, Stochastic and spatial structures of dynamical systems, pages 183–231. North-Holland, Amsterdam, 1996.
[31] Metz, J. A. J., Geritz, S. A. H., Nisbet, R. M.. How should we define 'fitness' for general ecological scenarios? Trends in Ecology & Evolution, 7 (1992), 198202.
[32] Milankovitch. Kanon der Erdbestrahlungen und seine Anwendung auf das Eiszeitenproblem. Royal Serbian Academy, Spec. Publ., 133 (1941), 1–633.
[33] Muller, E. B., Nisbet, R. M.. Survival and production in variable resource environments. Bulletin of Mathematical Biology, 62 (2000), 11631189.
[34] Olsen, P. E., Kent, D. V.. Long-period Milankovitch cycles from the Late Triassic and Early Jurassic of eastern North America and their implications for the calibration of the Early Mesozoic time-scale and the long-term behavior of the planets. Phil. Trans. R. Soc. Lond. (A), 357 (1999), 17611784.
[35] Parnas, H., Cohen, D.. The optimal strategy for the metabolism of reserve materials in micro-organisms. J. theor. Biol., 56 (1976), No. 1, 1955.
[36] R. H. Peters. The Ecological Implications of Body Size. Cambridge University Press, New York, 1983.
[37] Predavec, M.. Population-dynamics and environmental changes during natural irruptions of Australian desert rodents. Wildlife Research, 21 (1994), No. 5, 569582.
[38] Shertzer, K. W., Ellner, S. P.. Energy storage and the evolution of population dynamics. J. theor. Biol., 215 (2002), 183200.
[39] Smith, F. A., Betancourt, J. L., Brown, J. H.. Evolution of body size in the woodrat over the past 25,000 years of climate change. Science, 270 (1995), 20122014.
[40] Stenseth, N. C., Leirs, H., Skonhoft, A., Davis, S. A., Pech, R. P., Andreassen, H. P., Singleton, G. R., Lima, M., Machang'u, R. S., Makundi, R. H., Zhang, Z. B., Brown, P. R., Shi, D. Z., Wan, X. R.. Mice, rats and people: the bio-economics of agricultural rodent pests. Frontiers in Ecology and the Environment, 1 (2003), No. 7, 367375.
[41] Troost, T. A., Kooi, B. W., Dieckmann, U.. Joint evolution of predator body size and prey-size preference. Evolutionary Ecology, 22 (2008), 771799.
[42] T. A. Troost, B. W. Kooi, S. A. L. M. Kooijman. Bifurcation analysis of ecological and evolutionary processes in ecosystems. Ecological Modelling, 204 (2007), No. 1/2, 253–268.
[43] van Leeuwen, I. M. M., Kelpin, F. D. L., Kooijman, S. A. L. M.. A mathematical model that accounts for the effects of caloric restriction on body weight and longevity. Biogerontology, 3 (2002), No. 6, 373381.
[44] Wigginton, J. D., Dobson, F. S.. Environmental influences on geographic variation in body size of western bobcats. Canadian Journal of Zoology, 77 (1999), No. 5, 802813.


Seasonality, Climate Cycles and Body Size Evolution

  • T. A. Troost (a1), J. A. van Dam (a2) (a3), B. W. Kooi (a4) and E. Tuenter (a5)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed