Skip to main content Accessibility help
×
Home

Reduction of Discrete Dynamical Systems with Applications to Dynamics Population Models

  • R. Bravo de la Parra (a1), M. Marvá (a1), E. Sánchez (a2) and L. Sanz (a2)

Abstract

In this work we review the aggregation of variables method for discrete dynamical systems. These methods consist of describing the asymptotic behaviour of a complex system involving many coupled variables through the asymptotic behaviour of a reduced system formulated in terms of a few global variables. We consider population dynamics models including two processes acting at different time scales. Each process has associated a map describing its effect along its specific time unit. The discrete system encompassing both processes is expressed in the slow time scale composing the map associated to the slow one and the k-th iterate of the map associated to the fast one. In the linear case a result is stated showing the relationship between the corresponding asymptotic elements of both systems, initial and reduced. In the nonlinear case, the reduction result establishes the existence, stability and basins of attraction of steady states and periodic solutions of the original system with the help of the same elements of the corresponding reduced system. Several models looking over the main applications of the method to populations dynamics are collected to illustrate the general results.

Copyright

Corresponding author

Corresponding author. E-mail: rafael.bravo@uah.es

References

Hide All
[1] Ahmed, E., Hegazi, S.A.. On some variants of dynamical systems. Chaos Soliton. Fract., 12 (2001), No. 11, 20032008.
[2] P. Auger. Dynamics and thermodynamics in hierarchically organized systems. Pergamon Press, Oxford, 1989.
[3] P. Auger, R. Bravo de la Parra, J.-C. Poggiale, E. Sánchez, T. Nguyen-Huu. Aggregation of variables and applications to population dynamics. In: P. Magal, S. Ruan (Eds.). Structured Population Models in Biology and Epidemiology. Lecture Notes in Mathematics 1936, Mathematical Biosciences Subseries, Springer Verlag, Berlin, 2008, 209–263.
[4] Auger, P., Bravo de la Parra, R., Poggiale, J.-C., Sánchez, E., Sanz, L.. Aggregation methods in dynamical systems and applications in population and community dynamics. Phys. Life. Rev., 5 (2008), No. 2, 79105.
[5] Auger, P., Poggiale, J.-C.. Aggregation and emergence in systems of ordinary differential equations. Math. Comput. Model., 27 (1998), No. 4, 121.
[6] Auger, P., Poggiale, J.-C., Sánchez, E.. A review on spatial aggregation methods involving several time scales. Ecol. Complex., 10 (2012), No. 1, 1225.
[7] Auger, P., Roussarie, R.. Complex ecological models with simple dynamics: From individuals to populations. Acta Biotheor., 42 (1994), No. 2-3, 111136.
[8] Bravo de la Parra, R., Auger, P., Sánchez, E.. Aggregation methods in discrete models. J. Biol. Syst., 3 (1995), No. 2, 603612.
[9] Bravo de la Parra, R., Sánchez, E., Arino, O., Auger, P.. A Discrete Model with Density Dependent Fast Migration. Math. Biosci., 157 (1999), No. 1, 91110.
[10] Bravo de la Parra, R., Sánchez, E., Auger, P.. Time scales in density dependent discrete models. J. Biol. Syst., 5 (1997), No. 1, 111129.
[11] H. Caswell. Matrix Population Models: Construction, Analysis and Interpretation, second ed. Sinauer Associates Inc., Sunderland, 2001.
[12] J.M. Cushing. An Introduction to Structured Population Dynamics. SIAM, Philadelphia, 1998.
[13] Dubreuil, E., Auger, P., Gaillard, J.M., Khaladi, M.. Effect of aggressive behavior on age-structured population dynamics. Ecol. Model., 193 (2006), No. 3-4, 777786.
[14] Fenichel, N.. Persistence and Smoothness of Invariant Manifolds for Flows. Indiana U. Math. J., 21 (1972), No. 3, 193226.
[15] J. Hofbauer, K. Sigmund. Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge, 1998.
[16] Iwasa, Y., Andreasen, V., Levin, S.. Aggregation in model ecosystems I: Perfect Aggregation. Ecol. Model., 37 (1987), No. 3-4, 287302.
[17] Iwasa, Y., Levin, S., Andreasen, V.. Aggregation in model ecosystems. II. Approximate Aggregation. J. Math. Appl. Med. Biol., 6 (1989), No. 1, 123.
[18] Lett, P., Auger, P., Bravo de la Parra, R.. Migration Frequency and the Persistence of Host-Parasitoid Interactions. J. Theor. Bio., 221 (2003), No. 4, 639654.
[19] H. Lischke, T.J. Löffler, P.E. Thornton, N.E. Zimmermann. Up-scaling of biological properties and models to the landscape level. In: F. Kienast, S. Ghosh, O. Wildi (Eds.). A Changing World: Challenges for Landscape Research. Landscape Series 8, Springer Verlag, Berlin, 2007, 273–296.
[20] Luckyanov, N.K., Svirezhev, Yu.M., Voronkova, O.V.. Aggregation of variables in simulation models of water ecosystems. Ecol. Model., 18 (1983), No. 3-4, 235240.
[21] Marvá, M., Moussaoui, A., Bravo de la Parra, R., Auger, P.. A density dependent model describing age structured population dynamics using hawk-dove tactics. J. Differ. Equ. Appl., 19 (2013), No. 6, 10221034.
[22] Marvá, M., Sánchez, E., Bravo de la Parra, R., Sanz, L.. Reduction of slow–fast discrete models coupling migration and demography. J. Theor. Biol., 258 (2009), No. 3, 371379.
[23] M. Marvá. Approximate aggregation on nonlinear dynamical systems. Ph.D. Thesis, Universidad de Alcalá, Spain, 2011.
[24] Neubert, M.G., Caswell, H.. Density-dependent vital rates and their population dynamic consequences. J. Math. Biol., 41 (2000), No. 2, 103121.
[25] Nguyen Huu, T., Auger, P., Lett, C., Marvá, M.. Emergence of global behaviour in a host-parasitoid model with density-dependent dispersal in a chain of patches. Ecol. Complex., 5 (2008), No. 1, 921.
[26] Nguyen Huu, T., Bravo de la Parra, R., Auger, P.. Approximate aggregation of linear discrete models with two time-scales: re-scaling slow processes to the fast scale. J. Differ. Equ. Appl., 17 (2011), No. 4, 621635.
[27] Sánchez, E., Bravo de la Parra, R., Auger, P.. Discrete Models with Different Time-Scales. Acta Biotheor., 43 (1995), No. 4, 465479.
[28] Sanz, L., Alonso, J.A.. Approximate Aggregation Methods in Discrete Time Stochastic Population Models. Math. Model. Nat. Phenom., 5 (2010), No. 6, 3869.
[29] Sanz, L., Blasco, A., Bravo de la Parra, R.. Approximate reduction of multi-type Galton-Watson processes with two time scales. Math. Mod. Meth. Appl. S., 13 (2003), No. 4, 491525.
[30] Sanz, L., Bravo de la Parra, R.. Variables aggregation in a time discrete linear model. Math. Biosci., 157 (1999), No. 1, 111146.
[31] Sanz, L., Bravo de la Parra, R.. Time scales in stochastic multiregional models. Nonlinear Anal-Real., 1 (2000), No. 1, 89122.
[32] Sanz, L., Bravo de la Parra, R.. Time scales in a non autonomous linear discrete model. Math. Mod. Meth. Appl. S., 11 (2001), No. 7, 12031235.
[33] Sanz, L., Bravo de la Parra, R., Sánchez, E.. Two time scales non-linear discrete models approximate reduction. J. Differ. Equ. Appl., 14 (2008), No. 6, 607627.
[34] E. Seneta. Non-Negative Matrices and Markov Chains. Springer Verlag, New York, 1981.
[35] G.W. Stewart, J.I. Guang Sun. Matrix Perturbation Theory. Boston Academic Press, Boston, 1990.
[36] Taylor, A.D.. Heterogeneity in hostparasitoid interactions: aggregation of risk and the CV2 > 1 rule. Trends Ecol. Evol., 8 (1993), No. 11, 400405.

Keywords

Reduction of Discrete Dynamical Systems with Applications to Dynamics Population Models

  • R. Bravo de la Parra (a1), M. Marvá (a1), E. Sánchez (a2) and L. Sanz (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed