Skip to main content Accessibility help

Optimal Control of Leukemic Cell Population Dynamics

  • X. Dupuis


We are interested in optimizing the co-administration of two drugs for some acute myeloid leukemias (AML), and we are looking for in vitro protocols as a first step. This issue can be formulated as an optimal control problem. The dynamics of leukemic cell populations in culture is given by age-structured partial differential equations, which can be reduced to a system of delay differential equations, and where the controls represent the action of the drugs. The objective function relies on eigenelements of the uncontrolled model and on general relative entropy, with the idea to maximize the efficiency of the protocols. The constraints take into account the toxicity of the drugs. We present in this paper the modeling aspects, as well as theoretical and numerical results on the optimal control problem that we get.


Corresponding author

Corresponding author. E-mail:


Hide All
[1] Adimy, M., Crauste, F.. Mathematical model of hematopoiesis dynamics with growth factor-dependent apoptosis and proliferation regulations. Math. Comput. Modelling, 49 (11-12) 2009, 21282137.
[2] Adimy, M., Crauste, F., El Abdllaoui, A.. Discrete maturity-structured model of cell differentiation with applications to acute myelogenous leukemia. J. Biol. Systems, 16(3) 2008, 395424.
[3] J. L. Avila, C. Bonnet, J. Clairambault, H. Ozbay, S.-I. Niculescu, F. Merhi, R. Tang, J.-P. Marie. A new model of cell dynamics in Acute Myeloid Leukemia involving distributed delays. In 10th IFAC Workshop on Time Delay Systems, Boston, USA, 2012, 55–60.
[4] A. Ballesta, F. Mehri, X. Dupuis, C. Bonnet, J.F. Bonnans, R. Tang, F. Fava, P. Hirsch, J.-P. Marie, J. Clairambault. In vitro dynamics of LAM patient blood sample cells and their therapeutic control by aracytine and an Flt3 inhibitor. In preparation.
[5] Basdevant, C., Clairambault, J., Lévi, F.. Optimisation of time-scheduled regimen for anti-cancer drug infusion. M2AN Math. Model. Numer. Anal., 39(6) 2005, 10691086.
[6] Billy, F., Clairambault, J.. Designing proliferating cell population models with functional targets for control by anti-cancer drugs. Discrete Contin. Dyn. Syst. Ser. B, 18(4) 2013, 865889.
[7] F. Billy, J. Clairambault, O. Fercoq, S. Gaubert, T. Lepoutre, T. Ouillon, S. Saito. Synchronisation and control of proliferation in cycling cell population models with age structure. Mathematics and Computers in Simulation, 2012.
[8] J.F. Bonnans, X. Dupuis, L. Pfeiffer. Second-order necessary conditions in Pontryagin form for optimal control problems. Rapport de recherche RR-8306, INRIA, May 2013.
[9] J.F. Bonnans, P. Martinon, V. Grélard. Bocop v1.0.3: A collection of examples. Url:, June 2012.
[10] Feichtinger, G., Tragler, G., Veliov, V.M.. Optimality conditions for age-structured control systems. J. Math. Anal. Appl., 288(1) 2003, 4768.
[11] Gabriel, P., Garbett, S.P., Quaranta, V., Tyson, D.R., Webb, G.F.. The contribution of age structure to cell population responses to targeted therapeutics. J. Theoret. Biol., 311 2012, 1927.
[12] Göllmann, L., Kern, D., Maurer, H.. Optimal control problems with delays in state and control variables subject to mixed control-state constraints. Optimal Control Appl. Methods, 30(4) 2009, 341365.
[13] Guinn, T.. Reduction of delayed optimal control problems to nondelayed problems. J. Optimization Theory Appl., 18(3) 1976, 371377.
[14] Halanay, A.. Optimal controls for systems with time lag. SIAM Journal on Control, 6(2) 1968, 215234.
[15] Hinow, P., Wang, S., Arteaga, C., Webb, G.. A mathematical model separates quantitatively the cytostatic and cytotoxic effects of a her2 tyrosine kinase inhibitor. Theoretical Biology and Medical Modelling, 4(1) 2007, 14.
[16] Ledzewicz, U., Maurer, H., Schättler, H.. Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy. Math. Biosci. Eng., 8(2) 2011, 307323.
[17] Ledzewicz, U., Schättler, H.. Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy. Math. Biosci., 206(2) 2007, 320342.
[18] Mackey, M.C.. Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis. Blood, 51(5) 1978, 941956.
[19] Marquet, C., Adimy, M.. On the stability of hematopoietic model with feedback control. C. R. Math. Acad. Sci. Paris, 350(3-4) 2012, 173176.
[20] Michel, P., Mischler, S., Perthame, B.. General relative entropy inequality: an illustration on growth models. J. Math. Pures Appl. (9), 84(9) 2005, 12351260.
[21] Özbay, H., Bonnet, C., Benjelloun, H., Clairambault, J.. Stability analysis of cell dynamics in leukemia. Math. Model. Nat. Phenom., 7(1) 2012, 203234.
[22] Peixoto, D., Dingli, D., Pacheco, J.M.. Modelling hematopoiesis in health and disease. Mathematical and Computer Modelling, 53(7,8) 2011, 15461557.
[23] B. Perthame. Transport equations in biology. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2007.
[24] Rowe, J.M.. Why is clinical progress in acute myelogenous leukemia so slow? Best Practice & Research Clinical Haematology, 21(1): 2008, 13.
[25] Stiehl, T., Marciniak-Czochra, A.. Mathematical modeling of leukemogenesis and cancer stem cell dynamics. Math. Model. Nat. Phenom., 7(1) 2012, 166202.


Optimal Control of Leukemic Cell Population Dynamics

  • X. Dupuis


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed