Skip to main content Accessibility help

Efficient Processing of Fluorescence Images Using Directional Multiscale Representations

  • D. Labate (a1), F. Laezza (a2), P. Negi (a1), B. Ozcan (a1) and M. Papadakis (a1)...


Recent advances in high-resolution fluorescence microscopy have enabled the systematic study of morphological changes in large populations of cells induced by chemical and genetic perturbations, facilitating the discovery of signaling pathways underlying diseases and the development of new pharmacological treatments. In these studies, though, due to the complexity of the data, quantification and analysis of morphological features are for the vast majority handled manually, slowing significantly data processing and limiting often the information gained to a descriptive level. Thus, there is an urgent need for developing highly efficient automated analysis and processing tools for fluorescent images. In this paper, we present the application of a method based on the shearlet representation for confocal image analysis of neurons. The shearlet representation is a newly emerged method designed to combine multiscale data analysis with superior directional sensitivity, making this approach particularly effective for the representation of objects defined over a wide range of scales and with highly anisotropic features. Here, we apply the shearlet representation to problems of soma detection of neurons in culture and extraction of geometrical features of neuronal processes in brain tissue, and propose it as a new framework for large-scale fluorescent image analysis of biomedical data.


Corresponding author

Corresponding author. E-mail:


Hide All
[1] Al-Kofahi, Y., Lassoued, W., Lee, W., Roysam, B.. Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans. Biomed. Eng., 57 (2010), no. 4, 841-852.
[2] Candès, E. J., Donoho, D. L.. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities. Comm. Pure and Appl. Math., 56 (2004), 216-266.
[3] Chang, C. W., Mycek, M. A.. Total variation versus wavelet-based methods for image denoising in fluorescence lifetime imaging microscopy. J Biophotonics, 5 (2012), 449-457.
[4] Delatour, B., Blanchard, V., Pradier, L., Duyckaerts, C.. Alzheimer pathology disorganizes cortico-cortical circuitry: direct evidence from a transgenic animal model. Neurobiol Dis., 16 (2004), no. 1, 41-47.
[5] Dima, A., Scholz, M., Obermayer, K.. Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-D wavelet transform. IEEE Trans. Image Process., 11 (2002), no. 7, 790-801.
[6] Easley, G., Labate, D., Lim, W.. Sparse directional image representations using the discrete shearlet transform. Appl. Comput. Harmon. Anal., 25 (2008), 25-46.
[7] Easley, G., Labate, D., Negi, P. S.. 3D data denoising using combined sparse dictionaries. Math. Model. Nat. Phen., 8 (2013), no. 1, 60-74.
[8] N.I. Fisher. Statistical analysis of circular data. Cambridge University Press, 1993.
[9] Grigorescu, C., Petkov, N.. Distance sets for shape filters and shape recognition. IEEE Trans. on Image Processing, 12 (2003), no. 10, 1274-1286.
[10] Guo, K., Labate, D.. Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal., 39 (2007), 298-318.
[11] Guo, K., Labate, D.. Characterization and analysis of edges using the continuous shearlet transform. SIAM Journal on Imaging Sciences, 2 (2009), 959-986.
[12] Guo, K., Labate, D.. Analysis and detection of surface discontinuities using the 3D continuous shearlet transform. Appl. Comput. Harmon. Anal., 30 (2010), 231-242.
[13] Guo, K., Labate, D.. The construction of smooth Parseval frames of shearlets. Math. Model. Nat. Phen., 8 (2013), no. 1, 82-105.
[14] Guo, K., Labate, D., Lim, W.. Edge Analysis and identification using the continuous shearlet transform. Appl. Comput. Harmon. Anal., 27 (2009), 24-46.
[15] M. Holschneider. Wavelets. Analysis tool. Oxford University Press, Oxford, 1995.
[16] Jacobs, B., Praag, H., Gage, F.. Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol. Psychiatry, 5 (2000), no. 3, 262-269.
[17] T. F. James, J. Luisi, M. N. Nenov, N. Panova-Electronova, D. Labate, F. Laezza. The Nav1.2 channel is regulated by glycogen synthase kinase 3 (GSK3). To appear in Neuropharmacology (2014).
[18] S. Kullback. Information theory and statistics. John Wiley and Sons, NY, 1959.
[19] Kutyniok, G., Labate, D.. Resolution of the wavefront set using continuous shearlets. Trans. Amer. Math. Soc., 361 (2009), 2719-2754.
[20] G. Kutyniok, D. Labate. Shearlets: multiscale analysis for multivariate data. Birkhäuser, Boston (2012).
[21] D. Labate, W. Lim, G. Kutyniok, G. Weiss. Sparse multidimensional representation using shearlets. Wavelets XI (San Diego, CA, 2005), 254-262, SPIE Proc. 5914, SPIE, Bellingham, WA, (2005).
[22] Lamprecht, M.R., Sabatini, D.M., Carpenter, A.E.. CellProfiler: free, versatile software for automated biological image analysis. Biotechniques, 42 (2007), no. 1, 71-75.
[23] Langhammer, C. G., Previtera, P. M., Sweet, E. S., Sran, S. S., Chen, M., Firestein, B. L.. Automated Sholl analysis of digitized neuronal morphology at multiple scales: Whole cell Sholl analysis versus Sholl analysis of arbor subregions. Cytometry A, 77 (2010), no. 12, 1160-1168.
[24] F. Li, Z. Yin, G. Jin, H. Zhao, S.T. Wong. Bioimage informatics for systems pharmacology. PLoS Comput Biol. 9 (2013), no. 4, Chapter 17.
[25] S. Mallat. A wavelet tour of signal processing. Academic Press, San Diego, CA, 1998.
[26] Milosevic, N.T., Ristanovic, D., Stankovic, J.B.. Fractal analysis of the laminar organization of spinal cord neurons. Journal of Neuroscience Methods, 146 (2005), no. 2, 198-204.
[27] Murphy, R. F., Meijering, E., Danuser, G.. Special issue on molecular and cellular bioimaging. IEEE Trans. Image Process., 14 (2005), no. 9, 1233-1236.
[28] Ntziachristos, V.. Fluorescence molecular imaging. Annu. Rev. Biomed. Eng., 8 (2006), 1-33.
[29] B. Ozcan, D. Labate, D. Jimenez, M. Papadakis. Directional and non-directional representations for the characterization of neuronal morphology. Wavelets XV (San Diego, CA, 2013), SPIE Proc. 8858 (2013).
[30] Patel, V. M., Easley, G. R., Healy, D. M.. Shearlet-based deconvolution. IEEE Trans. Image Proc., 18 (2009), no. 12, 2673-2685.
[31] Portera-Cailliau, C., Weimer, R.M., De Paola, V., Caroni, P., Svoboda, K.. Diverse modes of axon elaboration in the developing neocortex. PLoS Biol., 3 (2005), no. 8, 1473-1487.
[32] Qi, X., Xing, F., Foran, D., Yang, L.. Robust segmentation of overlapping cells in histopathology specimens using parallel seed detection and repulsive level set. IEEE Trans Biomed Eng, 59 (2012), no. 3, 754-765.
[33] Y. Rubner, C. Tomasi, L. J. Guibas. A metric for distributions with applications to image databases. Proceedings ICCV, (1998), 59-66.
[34] Rubner, Y., Tomasi, C., Guibas, L. J.. The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision, 40 (2000), no. 2, 99-121.
[35] Schoenen, J.. The dendritic organization of the human spinal cord: the dorsal horn. Neuroscience, 7 (1982), 2057-2087.
[36] Sholl, D. A.. Dendritic organization in the neurons of the visual and motor cortices of the cat. J. Anat., 87 (1953), 387-406.
[37] Vallotton, P., Lagerstrom, R., Sun, C., Buckley, M., Wang, D.. Automated analysis of neurite branching in cultured cortical neurons using HCA-vision, Cytom. Part A, 71 (2007), no. 10, 889-895.
[38] Vonesch, C., Unser, M.. A fast thresholded Landweber algorithm for wavelet-regularized multidimensional deconvolution. IEEE Trans. Image Proc., 17 (2008), no. 4, 539-549.
[39] Vonesch, C., Unser, M.. A fast multilevel algorithm for wavelet-regularized image restoration. IEEE Trans. Image Proc., 18 (2009), no. 3, 509-523.
[40] Wählby, C., Sintorn, I. M., Erlandsson, F., Borgefors, G., Bengtsson, E.. Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections. J. Microsc., 215 (2004), 67-76.
[41] G. Weiss, E. Wilson. The mathematical theory of wavelets. Proceeding of the NATO–ASI Meeting. Harmonic Analysis 2000. A Celebration. Kluwer Publisher, (2001).
[42] Wen, Q., Stepanyants, A., Elston, G.N., Grosberg, A. Y., Chklovskiia, D. B.. Maximization of the connectivity repertoire as a statistical principle governing the shapes of dendritic arbors. PNAS, 106 (2009), no. 30, 12536-12541.
[43] Yan, C., Li, A., Zhang, B., Ding, W., Luo, Q., Gong, H.. Automated and accurate detection of soma location and surface morphology in large-scale 3D neuron images. PLoS One, no. 8 (2013), 4.
[44] Yi, S., Labate, D., Easley, G. R., Krim, H.. A shearlet approach to edge analysis and detection. IEEE Trans. Image Process., 18 (2009), no. 5, 929-941.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed