Skip to main content Accessibility help
×
Home

The Construction of Smooth Parseval Frames of Shearlets

  • K. Guo (a1) and D. Labate (a2)

Abstract

The shearlet representation has gained increasing recognition in recent years as a framework for the efficient representation of multidimensional data. This representation consists of a countable collection of functions defined at various locations, scales and orientations, where the orientations are obtained through the use of shear matrices. While shear matrices offer the advantage of preserving the integer lattice and being more appropriate than rotations for digital implementations, the drawback is that the action of the shear matrices is restricted to cone-shaped regions in the frequency domain. Hence, in the standard construction, a Parseval frame of shearlets is obtained by combining different systems of cone-based shearlets which are projected onto certain subspaces of L2(ℝD) with the consequence that the elements of the shearlet system corresponding to the boundary of the cone regions lose their good spatial localization property. In this paper, we present a new construction yielding smooth Parseval frame of shearlets for L2(ℝD). Specifically, all elements of the shearlet systems obtained from this construction are compactly supported and C in the frequency domain, hence ensuring that the system has also excellent spatial localization.

Copyright

Corresponding author

Corresponding author. E-mail: dlabate@math.uh.edu

References

Hide All
[1] Candès, E. J., Demanet, L.. The curvelet representation of wave propagators is optimally sparse. Comm. Pure Appl. Math. 58 (2005), 14721528.
[2] Candès, E. J., Demanet, L., Donoho, D., Ying, L.. Fast Discrete Curvelet Transforms. Multiscale Model. Simul. 5 (2006), 861899.
[3] Candès, E. J., Donoho, D. L.. Ridgelets : the key to high dimensional intermittency?. Philosophical Transactions of the Royal Society of London A 357 (1999), 24952509.
[4] Candès, E. J., Donoho, D. L.. New tight frames of curvelets and optimal representations of objects with C2 singularities. Comm. Pure Appl. Math. 57 (2004), 219266.
[5] Colonna, F., Easley, G., Guo, K., Labate, D.. Radon Transform Inversion using the Shearlet Representation. Appl. Comput. Harmon. Anal. 29 (2) (2010), 232250.
[6] Dahlke, S., Kutyniok, G., Maass, P., Sagiv, C., Stark, H.-G., Teschke, G.. The uncertainty principle associated with the continuous shearlet transform. Int. J. Wavelets Multiresolut. Inf. Process. 6 (2008), 157181.
[7] Do, M. N., Vetterli, M.. The contourlet transform : an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14 (2005), 20912106.
[8] Donoho, D. L.. Wedgelets : Nearly-minimax estimation of edges. Annals of Statistics, 27 (1999), 859897.
[9] Easley, G. R., Labate, D., Colonna, F.. Shearlet-Based Total Variation Diffusion for Denoising. IEEE Trans. Image Proc. 18 (2) (2009), 260268.
[10] Easley, G. R., Labate, D., Lim, W.. Sparse Directional Image Representations using the Discrete Shearlet Transform. Appl. Comput. Harmon. Anal. 25 (1) (2008), 2546.
[11] Grohs, P.. Tree Approximation with anisotropic decompositions. Appl. Comput. Harmon. Anal. 33(1) (2012), 4457.
[12] P. Grohs. Bandlimited Shearlet Frames with nice Duals. SAM Report 2011-55, ETH Zurich, July 2011.
[13] K. Guo, G. Kutyniok, D. Labate. Sparse Multidimensional Representations using Anisotropic Dilation and Shear Operators in : Wavelets and Splines, G. Chen and M. Lai (eds.), Nashboro Press, Nashville, TN (2006), pp. 189–201.
[14] Guo, K., Labate, D.. Optimally Sparse Multidimensional Representation using Shearlets. SIAM J. Math. Anal. 9 (2007), 298318
[15] Guo, K., Labate, D.. Representation of Fourier Integral Operators using Shearlets. J. Fourier Anal. Appl. 14 (2008), 327371
[16] Guo, K., Labate, D.. Characterization and analysis of edges using the continuous shearlet transform. SIAM J. Imag. Sci. 2 (2009), 959986.
[17] Guo, K., Labate, D.. Optimally sparse 3D approximations using shearlet representations. Electron. Res. Announc. Math. Sci. 17 (2010), 126138.
[18] Guo, K., Labate, D.. Optimally sparse representations of 3D Data with C2 surface singularities using Parseval frames of shearlets. SIAM J Math. Anal. 44 (2012), 851886.
[19] Guo, K., Labate, D., Lim, W.-Q.. Edge analysis and identification using the Continuous Shearlet Transform. Appl. Comput. Harmon. Anal. 27 (2009), 2446.
[20] Guo, K., Labate, D., Lim, W.-Q, Weiss, G., Wilson, E.. Wavelets with composite dilations. Electron. Res. Announc. Amer. Math. Soc. 10 (2004), 7887.
[21] K. Guo, D. Labate, W-Q. Lim, G. Weiss, E. Wilson. The theory of wavelets with composite dilations. in : Harmonic Analysis and Applications, C. Heil (ed.), Birkhäuser, Boston, MA, 2006.
[22] Guo, K., Lim, W-Q., Labate, D., Weiss, G., Wilson, E.. Wavelets with composite dilations and their MRA properties. Appl. Computat. Harmon. Anal. 20 (2006), 231249.
[23] Han, B.. Pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space. Appl. Comput. Harmon. Anal. 29 (2010), 330353.
[24] Han, B.. Nonhomogeneous wavelet systems in high dimensions. Appl. Comput. Harmon. Anal. 32 (2012), 169196.
[25] Houska, R.. The nonexistence of shearlet scaling functions. Appl. Comput Harmon. Anal. 32 (1) (2012), 2844.
[26] P. Kittipoom, G. Kutyniok, W.-Q Lim. Construction of compactly supported shearlet frames. Constr. Approx., to appear (2012).
[27] G. Kutyniok. Sparsity Equivalence of Anisotropic Decompositions. preprint (2012).
[28] Kutyniok, G., Labate, D.. Resolution of the wavefront set using continuous shearlets. Trans. Amer. Math. Soc. 361 (2009), 27192754.
[29] Kutyniok, G., Lim, W.-Q.. Compactly supported shearlets are optimally sparse. J. Approx. Theory 163 (2011), 15641589.
[30] Kutyniok, G., Sauer, T.. Adaptive Directional Subdivision Schemes and Shearlet Multiresolution Analysis. SIAM J. Math. Anal. 41 (2009), 14361471.
[31] D. Labate, W.-Q Lim, G. Kutyniok, G. Weiss. Sparse multidimensional representation using shearlets. in Wavelets XI, edited by M. Papadakis, A. F. Laine, and M. A. Unser, SPIE Proc. 5914 (2005), SPIE, Bellingham, WA, 2005, 254–262.
[32] Y. Meyer, R. Coifman. Wavelets, Calderón-Zygmund Operators and Multilinear Operators. Cambridge Univ. Press, Cambridge, 1997.
[33] Negi, P. S., Labate, D.. 3D Discrete Shearlet Transform and Video Processing. IEEE Trans. Image Process. 21 (6) (2012), 29442954.
[34] Patel, V.M., Easley, G., Healy, D. M.. Shearlet-based deconvolution. IEEE Trans. Image Process. 18 (12) (2009), 2673-2685
[35] Yi, S., Labate, D., Easley, G. R., Krim, H.. A Shearlet approach to Edge Analysis and Detection. IEEE Trans. Image Process 18 (5) (2009), 929941.

Keywords

The Construction of Smooth Parseval Frames of Shearlets

  • K. Guo (a1) and D. Labate (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed