Skip to main content Accessibility help

3D Data Denoising Using Combined Sparse Dictionaries

  • G. Easley (a1), D. Labate (a2) and P. Negi (a2)


Directional multiscale representations such as shearlets and curvelets have gained increasing recognition in recent years as superior methods for the sparse representation of data. Thanks to their ability to sparsely encode images and other multidimensional data, transform-domain denoising algorithms based on these representations are among the best performing methods currently available. As already observed in the literature, the performance of many sparsity-based data processing methods can be further improved by using appropriate combinations of dictionaries. In this paper, we consider the problem of 3D data denoising and introduce a denoising algorithm which uses combined sparse dictionaries. Our numerical demonstrations show that the realization of the algorithm which combines 3D shearlets and local Fourier bases provides highly competitive results as compared to other 3D sparsity-based denosing algorithms based on both single and combined dictionaries.


Corresponding author

Corresponding author. E-mail:


Hide All
[1] Bobin, J., Starck, J.-L., Fadili, M.J., Moudden, Y., Donoho, D.L.. Morphological component analysis : an adaptive thresholding strategy. IEEE Trans. Image Process. 16 (11) (2007), 26752681.
[2] Candès, E. J., Demanet, L., Donoho, D., Ying, L.. Fast discrete curvelet transforms. Multiscale Model. Simul. 5 (2006), 861899.
[3] Candès, E. J., Donoho, D. L.. Ridgelets : the key to high dimensional intermittency? Philosophical Transactions of the Royal Society of London A, 357 (1999), 24952509.
[4] Candès, E. J., Donoho, D. L.. New tight frames of curvelets and optimal representations of objects with C2 singularities. Comm. Pure Appl. Math., 57 (2004), 219266.
[5] Chen, S. S., Donoho, D. L., Saunders, M. A.. Atomic decomposition by basis pursuit. SIAM Rev. 43 (1) (2001), 129159.
[6] Daubechies, I., Defrise, M., De Mol, C.. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math. 57 (2004), 14131457.
[7] Donoho, D. L.. Denoising by soft thresholding. IEEE Trans. Inf. Theory, 41 (3) (1995), 613627.
[8] Donoho, D. L.. Sparse components of images and optimal atomic decomposition. Constr. Approx. 17 (2001), 353382.
[9] Donoho, D. L.. Wedgelets : nearly-minimax estimation of edges. Annals of Statistics, 27 (1999), 859897.
[10] Donoho, D. L., Johnstone, I. M.. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81 (3) (1994), 425455.
[11] Donoho, D. L., Johnstone, I. M.. Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90 (1995), 12001224.
[12] Donoho, D. L., Johnstone, I. M., Kerkyacharian, G., Picard, D.. Wavelet shrinkage. Asymptopia. J. Roy. Statist. Soc. B, 57 (2) (1995), 301337.
[13] Easley, G. R., Labate, D., Colonna, F.. Shearlet-based total variation diffusion for denoising. IEEE Trans. Image Proc. 18 (2) (2009), 260268.
[14] Easley, G. R., Labate, D., Lim, W.. Sparse directional image representations using the discrete shearlet transform. Appl. Comput. Harmon. Anal., 25 (1) (2008), 2546.
[15] M. Elad. Sparse and Redundant Representations : From Theory to Applications in Signal and Image Processing. Springer, New York, NY, 2010.
[16] Elad, M., Milanfar, P., Rubinstein, R.. Analysis Versus Synthesis in Signal Priors. Inverse Problems, 23 (3) (2007), 947968.
[17] K. Guo, G. Kutyniok, D. Labate. Sparse Multidimensional Representations using Anisotropic Dilation and Shear Operators, in : Wavelets and Splines, G. Chen and M. Lai (eds.), Nashboro Press, Nashville, TN (2006), 189–201.
[18] Guo, K., Labate, D.. Optimally Sparse Multidimensional Representation using Shearlets. SIAM J. Math. Anal.. 9 (2007), 298318.
[19] Guo, K., Labate, D.. Optimally sparse 3D approximations using shearlet representations. Electron. Res. Announc. Math. Sci. 17 (2010), 126138.
[20] Guo, K., Labate, D.. Optimally sparse representations of 3D Data with C2 surface singularities using Parseval frames of shearlets. SIAM J Math. Anal. 44 (2012), 851886.
[21] Guo, K., Labate, D.. The Construction of Smooth Parseval Frames of Shearlets. Math. Model. Nat. Phenom. 8 (1) (2013), 3255.
[22] X. Huo. Sparse Image Representation Via Combined Transforms, Ph.D. Thesis, Stanford University, 1999.
[23] G. Kutyniok. Clustered sparsity and separation of cartoon and texture, preprint (2012).
[24] D. Labate, W.-Q Lim, G. Kutyniok, G. Weiss. Sparse multidimensional representation using shearlets, in Wavelets XI, edited by M. Papadakis, A. F. Laine, and M. A. Unser, SPIE Proc. 5914 (2005), SPIE, Bellingham, WA, 2005, 254–262.
[25] Lu, Y., Do, M. N.. Multidimensional directional filter banks and surfacelets, IEEE Trans. Image Process., 16 (4) (2007), 918931.
[26] Malgouyres, F.. Minimizing the total variation under a general convex constraint for image restoration. IEEE Trans. Signal Process. 11 (12) (2002), 14501456.
[27] S. Mallat. A Wavelet Tour of Signal Processing.Third Edition : The Sparse Way, Academic Press, San Diego, CA, 2008.
[28] Meyer, F. G., Averbuch, A. Z., Coifman, R.. Multi-layered image representation : Application to image compression, IEEE Trans. Image Process. 11(6) (1998), 10721080.
[29] Negi, P. S., Labate, D.. 3D discrete shearlet transform and video processing, IEEE Trans. Image Process. 21(6) (2012), 9442954.
[30] V. M. Patel, G. R. Easley, R. Chellappa, Component-based restoration of speckled images, Proceedings 18th IEEE International Conference on Image Processing (ICIP), 2011.
[31] Starck, J. L., Elad, M., Donoho, D.L.. Image decomposition via the combination of sparse representations and a variational approach, IEEE Trans. Image Process. 14(10) (2005), 15701582.
[32] Starck, J. L., Murtagh, F., Bijaoui, A.. Multiresolution support applied to image filtering and restoration, Graphic. Models Image Process. 57 (1995), 420431.
[33] J. L. Starck, F. Murtagh, J. M. Fadili. Sparse Image and Signal Processing, Cambridge University Press, New York, NY, 2010.
[34] Woiselle, A., Starck, J. L., Fadili, J. M.. 3-D Data denoising and inpainting with the Low-Redundancy Fast Curvelet Transform, J. Math. Imaging Vis. 39(2) (2011), 121139.


3D Data Denoising Using Combined Sparse Dictionaries

  • G. Easley (a1), D. Labate (a2) and P. Negi (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed