“The ambitious learner should carefully study a new fact; he should turn it over and over, consider it under various aspects, scrutinize it from all sides … Moreover, he should try to expand and enlarge any newly acquired knowledge by application, generalization, specialization, analogy, and in all other ways.” [1]
Vincenzo Viviani, a 17th century mathematician, proved that the sum of the (perpendicular) distances from a point within an equilateral triangle to its sides is constant as shown in Figure 1. The theorem, named after him, generalises to polygons that are equilateral or equi-angled, or to 2n-gons with opposite sides parallel. Viviani's theorem is easily proved by summing the areas of triangles APB, BPC and CPA, equating to the area of the triangle ABC, and then simplifying to obtain h
1 + h
2 + h
3 = H, where H is the altitude of ABC.