Skip to main content Accessibility help
×
Home

Synthesis of Nitrogen-Rich GaNAs Semiconductor Alloys and Arsenic-Doped GaN by Metalorganic Chemical Vapor Deposition

  • M. Gherasimova (a1), B. Gaffey (a1), P. Mitev (a1), L. J. Guido (a1), K. L. Chang (a2), K. C. Hsieh (a2), S. Mitha (a3) and J. Spear (a4)...

Abstract

Arsenic-doped GaN films and GaNAs films have been synthesized by MOCVD. Samples were grown on sapphire, GaN-coated sapphire, and GaAs substrates. Composition, structure, and phase distribution were characterized by EPMA, SIMS, XRD, and TEM. The arsenic content increases demonstrably as the growth temperature descreases from 1030 to 700 °C. In the high temperature limit, high quality arsenic-doped GaN forms on GaN-coated sapphire. In the low temperature regime, nitrogen-rich GaNAs forms under some growth conditions, with a maximum arsenic mole fraction of 3%, and phase segregation in the form of GaAs precipitates occurs with an increase in arsine pressure. Preferential formation of the nitrogen-rich phase on GaN-coated sapphire suggests the presence of substrate-induced “composition pulling”.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Synthesis of Nitrogen-Rich GaNAs Semiconductor Alloys and Arsenic-Doped GaN by Metalorganic Chemical Vapor Deposition
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Synthesis of Nitrogen-Rich GaNAs Semiconductor Alloys and Arsenic-Doped GaN by Metalorganic Chemical Vapor Deposition
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Synthesis of Nitrogen-Rich GaNAs Semiconductor Alloys and Arsenic-Doped GaN by Metalorganic Chemical Vapor Deposition
      Available formats
      ×

Copyright

Footnotes

Hide All

MRS Internet J. Nitride Semicond. Res. 4S1, G3.44(1999)

Footnotes

References

Hide All
1 Iwata, K., Asahi, H. Asami, K., Kuroiwa, R., and Gonda, S., Jpn. J. Appl. Phys. 3 7, 1436 (1998).
2 Kuroiwa, R., Asahi, H., Asami, K., Kim, S.-J., Iwata, K., and Gonda, S., Appl. Phys. Lett. 73, 2630 (1998).
3 Zhao, Y., 1998 Electronic Materials Conference, Charlottesville, June, 1998.
4 Sapphire substrate coated with a high-quality, 1 μm thick GaN epitaxial layer.
5 300 Å of GaN deposited on sapphire at 550 °C, followed by an arsenic-bearing test layer.
6 The basic method is described in J. Appl. Phys. 64, 3760 (1988). In the present case, the arsenic mole fraction was obtained by dividing the (CsAs)+ ion counts by the sum of the (CsAs)+ and (CsN)+ signals.
7 Hiramatsu, K., Kawaguchi, Y., Shimizu, M., Sawaki, N., Zheleva, T., Davis, R. F., Tsuda, H., Taki, W., Kuwano, N., and Oki, K., MRS Internet J. Nitride Semicond. Res., Vol. 2, Article 6.
8 Guido, L. J., Mitev, P., Gherasimova, M., and Gaffey, B., Appl. Phys. Lett. 72, 2005 (1998).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed