Skip to main content Accessibility help
×
Home

Properties and Effects of Hydrogen in GaN

  • S.J. Pearton (a1), H. Cho (a1), F. Ren (a2), J.-I. Chyi (a3), J. Han (a4) and R.G. Wilson (a5)...

Abstract

The status of understanding of the behavior of hydrogen in GaN and related materials is reviewed. In particular, we discuss the amount of residual hydrogen in MOCVD-grown device structures such as heterojunction bipolar transistors, thyristors and p-i-n diodes intended for high power, high temperature applications. In these structures, the residual hydrogen originating from the growth precursors decorates Mg-doped layers and AlGaN/GaN interfaces. There is a significant difference in the diffusion characteristics and thermal stability of implanted hydrogen between n- and p-GaN, due to the stronger affinity of hydrogen to pair with acceptor dopants and possibly to the difference in H2 formation probability.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Properties and Effects of Hydrogen in GaN
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Properties and Effects of Hydrogen in GaN
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Properties and Effects of Hydrogen in GaN
      Available formats
      ×

Copyright

References

Hide All
1. see for example, Pearton, S.J., Zolper, J.C., Shul, R.J. and Ren, F., “GaN: Defects, Processing and Devices”, J. Appl. Phys. 78 R1 (1999).
2. Walle, C.G. Van de, “Theory of Hydrogen is Semiconductors”, Mat. Res. Soc. Symp. Proc. 513 55 (1998).
3. Myers, S.M., Headly, T.J., Hills, C.R., Han, J.. Petersen, G.A., Seager, C.H., Wampler, W.R., “The behavior of Ion-Implanted Hydrogen in GaN”, MRS Internet J. Nitride Semicond. Res. 4S1 G5.8 (1999).
4. Wampler, W.R. and Myers, S.M., “Ion Channeling Analysis of GaN Implanted with Deuterium”, MRS Internet J. Nitride Semicond. Res. 4S1 G3.73 (1999).
5. Weinstein, M.G., Song, C.Y., Stavola, M., Pearton, S.J., Wilson, R.G., Shul, R.J., Killeen, K.P. and Ludowise, M.J., “H Decorated Lattice Defects in Proton-Implanted GaN”, Appl. Phys. Lett. 72 1703 (1998).
6. Weinstein, M.G., Stavola, M., Song, C.Y., Bozdog, C., Przbylinska, H., Watkins, G.D., Pearton, S.J. and Wilson, R.G., “Spectroscopy of Proton-Implanted GaN”, MRS Internet J. Nitride Semicond. Res. 4S1 G5.9 (1999).
7. Zavada, J.M., Wilson, R.G., Abernathy, C.R. and Pearton, S.J., “Hydrogenation of GaN, AlN and InN”, Appl. Phys. Lett. 64 2724 (1994).
8. Wilson, R.G., Pearton, S.J., Abernathy, C.R. and Zavada, J.M., “Outdiffusion of deuterium from GaN, AlN and InN”, J. Vac. Sci. Technol. A 13 719 (1995).
9. Miyachi, M., Tanaka, T., Kimura, Y. and Ota, H., “The Activation of Mg in GaN by Annealing with Minority Carrier Injection”, Appl. Phys. Lett. 72 1101 (1998).
10. Torres, V.J.B., Oberg, S. and Jones, R., “Theoretical Studies of Hydrogen Passivated Substitutional Mg Acceptor in Wurzite GaN”, MRS Internet J. Nitride Semicond. Res. 2 35 (1997).
11. Pearton, S.J., Abernathy, C.R., Vartuli, C.B., Lee, J.W., MacKenzie, J.D., Wilson, R.G., Shul, R.J., Ren, F. and Zavada, J.M., “Unintentional Hydrogenation of GaN and Related Alloys During Processing”, J. Vac. Sci. Technol. A 14 831 (1996).
12. Ohba, Y. and Hatano, A., “Mg Doping and H Incorporation in GaN MOCVD”, Jpn. J. Appl. Phys. 33 L1367 (1994).
13. Lee, J.W., Pearton, S.J., Zolper, J.C. and Stall, R.A., “Hydrogen Passivation of Ca Acceptors in GaN”, Appl. Phys. Lett. 68 2102 (1996).
14. Neugebauer, J. and Van de Walle, C.G., “Role of H in Doping of GaN”, Appl. Phys. Lett. 68 1829 (1996).
15. Myers, S.M., Han, J., Headly, T.J., Hills, C.R., Petersen, G.A., Seager, C.H., Wampler, W.R. and Wright, A.F., “Behavior of Ion-Implanted Hydrogen in GaN at Concentrations ≥ 1 at.%”, Phys. Rev. B (in press).
16. Harima, H., Inoue, T., Nakashima, S., Ishida, M. and Taneya, M., “Local Vibrational Modes as a Probe of Activation Process in p-type GaN”, Appl. Phys. Lett. 75 1383 (1999).
17. Sugiura, L., Suzuki, M. and Nishino, J., “P-type Conduction in As-Grown Mg-Doped GaN Grown by MOCVD”, Appl. Phys. Lett. 72 1748 (1998).
18. Amano, H., Kito, M., Hiramatsu, K. and Akasaki, I., Jap. J. Appl. Phys. 28 L112 (1989).
19. Van de Walle, C.G., “Interaction of Hydrogen with Native Defects in GaN”, Phys. Rev. B 56 R10020 (1997).
20. Estreicher, S.K. and Maric, D.M., “Theoretical Study of H in Cubic GaN”, Mat. Res. Soc. Symp. Proc. 423 613 (1996).
21. Nakamura, S., Iwasa, N., Senoh, M. and Mukai, T., “Hole Compensation Mechanism of p-GaN Films”, Jpn. J. Appl. Phys. 31 1258 (1992).
22. Nakamura, S., Mukai, T., Senoh, M. and Iwasa, N., “Thermal Annealing Effects on p-type, Mg-Doped GaN Films”, Jpn. J. Appl. Phys. 31 L139 (1992).
23. Gatz, W., Johnson, N.H., Bour, D.P., McCluskey, M.D. and Haller, E.E., “Local Vibrational Modes of the Mg-H Acceptor Complex in GaN”, Appl. Phys. Lett. 69 3725 (1996).
24. Bosin, A., Fiorentini, V. and Vanderbilt, D., “H, Acceptors, and H-Acceptors Complexes in GaN”, Mat. Res. Soc. Symp. Proc. 395 503 (1996).
25. Okamoto, Y., Saito, M. and Oshiyama, A., “First Principles Calculations on Mg and Mg-H in GaN”, Jap. J. Appl. Phys. 35 L807 (1996).
26. Van Vechten, J.A., Zook, J.D., Horning, R.D. and Goldenberg, B., “Detecting Compensation in Wide Bandgap Semiconductors by Growing in H That is Removed by Low Temperature De-Ionizing Radiation”, Jpn. J. Appl. Phys. 31 3662 (1992).
27. Pearton, S.J., Lee, J.W. and Yuan, C., “Minority Carrier Enhanced Passivation of H-Passivated Mg in GaN”, Appl. Phys. Lett. 68 2690 (1996).
28. see for example Popovici, G. and Morhoe, H., “Growth and Doping of Defects in III-Nitrides”, In GaN and Related Materials II, ed. Pearton, S.J. (Gordon, Breach, NY, 1999).
29. Amano, H., Akasaki, I., Kozawa, T., Sawaki, N., Ikeda, K. and Ishii, Y., “Doping of GaN with Zn”, J. Lumin. 4 121 (1988).
30. Pearton, S.J., Abernathy, C.R. and Ren, F., “Electrical Passivation in H-Plasma-Exposed GaN”, Electron. Lett. 30 527 (1994).
31. Burchaid, A., Deicher, M., Forkel-Wirth, D., Haller, E.E., Magerle, R., Prospero, A. and Stotzler, R., “First Microscopic Observation of Cd-H Pairs in GaN”, Mat. Res. Soc. Symp. Proc. 449 961 (1997).
32. Johnson, N.M., Gotz, W., Neugebauer, J. and Van de Walle, C.G., “Hydrogen in GaN”, Mat. Res. Soc. Symp. Proc. 395 723 (1996).
33. Neumark, C.F., “Defects in Wide Bandgap II-VI Crystals”, Mat. Sci. Eng. R 21 1 (1997).
34. Pearton, S.J., Corbett, J.W. and Stavola, M., Hydrogen in Crystalline Semiconductors (Springer-Verlag, Berlin 1992).
35. Antell, G. R., Briggs, A.T.R., Butler, B.P., Kitching, S.A., Stagg, J.P., Chew, A. and Sykes, D.E., “Passivation of Zn Acceptors in InP by Atomic Hydrogen Coming from AsH3 during MOVPE”, Appl. Phys. Lett. 53 758 (1988).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed