Skip to main content Accessibility help
×
Home

Processing And Device Performance Of GaN Power Rectifiers

  • A.P. Zhang (a1), G.T. Dang (a1), X.A. Cao (a2), H. Cho (a2), F. Ren (a1), J. Han (a3), J.-I. Chyi (a4), C.-M. Lee (a4), T.-E. Nee (a4), C.-C. Chuo (a4), G.-C. Chi (a5), S.N.G. Chu (a6), R.G. Wilson (a7) and S.J. Pearton (a2)...

Abstract

Mesa and planar geometry GaN Schottky rectifiers were fabricated on 3-12µm thick epitaxial layers. In planar diodes utilizing resistive GaN, a reverse breakdown voltage of 3.1 kV was achieved in structures containing p-guard rings and employing extension of the Schottky contact edge over an oxide layer. In devices without edge termination, the reverse breakdown voltage was 2.3 kV. Mesa diodes fabricated on conducting GaN had breakdown voltages in the range 200-400 V, with on-state resistances as low as 6m Ω·cm−2.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Processing And Device Performance Of GaN Power Rectifiers
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Processing And Device Performance Of GaN Power Rectifiers
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Processing And Device Performance Of GaN Power Rectifiers
      Available formats
      ×

Copyright

References

Hide All
1. Shur, M.S., “GaN-Based Transistors for High Power Applications,” Solid-State Electronics 42, 2119 (1998).
2. Chyi, J.-I., Lee, C.-M., Chuo, C.-C., Chi, G.C., Dang, G.T., Zhang, A.P., Ren, F., Cao, X.A., Pearton, S.J., Chu, S.N.G. and Wilson, R.G., “Growth and Device Performance of GaN Schottky Rectifiers,” MRS Internet J. Nitride Semicond. Res. 4, 8 (1999).
3. Bandic, Z.Z., Bridger, D.M., Piquette, E.C., McGill, T.C., Vaudo, R.P., Phanse, V.M. and Redwing, J.M., “High Voltage (450 V) GaN Schottky Rectifiers,” Appl. Phys. Lett. 74, 1266 (1999).
4. Trivedi, M. and Shenai, K., “Performance Evaluation of High Power, Wide Bandgap Semiconductor Rectifiers,” J. Appl. Phys. 85, 6880 (1999).
5. Dmitriev, V.A., Irvine, K.G., Carter, C.H. Jr., Kuznetsov, N.I. and Kalinina, E.V., “Electric Breakdown in GaN p-n Junctions,” Appl. Phys. Lett. 68, 229 (1996).
6. Pearton, S.J., Zolper, J.C., Shul, R.J. and Ren, F., “GaN: Processing, Defects and Devices,” J. Appl. Phys. 86, 1 (1999).

Processing And Device Performance Of GaN Power Rectifiers

  • A.P. Zhang (a1), G.T. Dang (a1), X.A. Cao (a2), H. Cho (a2), F. Ren (a1), J. Han (a3), J.-I. Chyi (a4), C.-M. Lee (a4), T.-E. Nee (a4), C.-C. Chuo (a4), G.-C. Chi (a5), S.N.G. Chu (a6), R.G. Wilson (a7) and S.J. Pearton (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed