Skip to main content Accessibility help
×
Home

Photoluminescence in n-doped In0.1Ga0.9N/In0.01Ga0.99N multiple quantum wells

  • B. Monemar (a1), P.P. Paskov (a1), J. P. Bergman (a1), G. Pozina (a1), V. Darakchieva (a1), M. Iwaya (a2) (a3), Satoshi Kamiyama (a2) (a3), H. Amano (a2) (a3) and I. Akasaki (a2) (a3)...

Abstract

In0.1Ga0.9N/In0.01Ga0.99N multiple quantum wells (MQWs) with heavily Si-doped barriers, grown with Metal Organic Vapor Phase Epitaxy (MOVPE) at about 8000C, have been studied in detail with optical spectroscopy. Such structures are shown to be very sensitive to a near surface depletion field, and if no additional layer is grown on top of the MQW structure the optical spectra from the individual QWs are expected to be drastically different. For a sample with 3 near surface QWs and Si-doped barriers, only the QW most distant from the surface is observed in photoluminescence (PL). The strong surface depletion field is suggested to explain these results, so that the QWs closer to the surface cannot hold the photo-excited carriers. A similar effect of the strong depletion field is found in an LED structure where the MQW is positioned at the highly doped n-side of the pn-junction. The internal polarization induced electric field in the QWs is also rather strong, and incompletely screened by carriers transferred from the doped barriers. The observed PL emission for this QW is of localized exciton character, consistent with the temperature dependence of peak position and PL decay time. The excitonic lineshape of 35-40 meV in the QW PL is explained as caused by a combination of random alloy fluctuations and interface roughness; the corresponding localization potentials are also responsible for the localization of the excitons in the low temperature range (<150 K). These samples show no evidence of localization due to nanoscale In fluctuations, these commonly observed problems are concluded to be not present in our samples. A second PL feature at lower energy, observed at low temperatures, is shown to be related to an electron pocket at the interface to the underlying n-GaN buffer layer in these samples.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Photoluminescence in n-doped In0.1Ga0.9N/In0.01Ga0.99N multiple quantum wells
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Photoluminescence in n-doped In0.1Ga0.9N/In0.01Ga0.99N multiple quantum wells
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Photoluminescence in n-doped In0.1Ga0.9N/In0.01Ga0.99N multiple quantum wells
      Available formats
      ×

Copyright

References

Hide All
[1] Nakamura, Shuji, Fasol, Gerhard, The Blue Laser Diode - GaN based Light Emitters and Lasers (Springer-Verlag, Heidelberg, 1997).
[2] Chichibu, S. F., Shikanai, A., Deguchi, T., Setoguchi, A., Nakai, R., Nakanishi, H., Wada, K., DenBaars, S. P., Sota, T., Nakamura, S., Jpn. J. Appl. Phys. 39, 2417 (2000).
[3] Narukawa, Y., Kawakami, Y., Fujita, S., Fujita, S., Nakamura, S., Phys. Rev. B 55, R1938 (1997).
[4] Sugahara, T., Sakai, S., Lachab, M., Fareed, R. S. Q., Tottori, S., Wang, T., Phys. Stat. Sol. B 216, 273 (1999).
[5] Monemar, B., Bergman, J. P., Dalfors, J., Pozina, G., Sernelius, B.E., Holtz, P.O., Amano, H., Akasaki, I., MRS Internet J. Nitride Semicond. Res. 4, 16 (1999).
[6] Lefebvre, P., Morel, A., Gallart, M., Taliercio, T., Allegre, J., Gil, B., Mathieu, H., Damilano, B., Grandjean, N., Massies, J., Appl. Phys. Lett. 78, 1252 (2001).
[7] Waltereit, P., Brandt, O., Ringling, J., Ploog, K. H., Phys. Rev. B 64, 245305 (2001).
[8] O’Donnell, K. P., Martin, R. W., Middleton, P. G., Phys. Rev. Lett. 82, 237 (1999).
[9] Ponce, F. A., Cherns, D., Goetz, W., Kern, R. S., Mater. Res. Soc. Symp. Proc. 482, 453 (1998).
[10] Ruterana, P., in “Low Dimensional Nitride Semiconductors”, edited by Gil, B., (Oxford University Press, Oxford, 2002), p. 151
[11] Monemar, B., Paskov, P. P., Pozina, G., Paskova, T., Bergman, J. P., Iwaya, M., Nitta, S., Amano, H., Akasaki, I., Phys. Stat. Sol. B 228, 157 (2001).
[12] Monemar, B., Pozina, G., Prog. Quantum Electron. 24, 239 (2000).
[13] Wetzel, C, Takeuchi, T, Amano, H, Akasaki, I, Jpn. J. Appl. Phys. 38, L163-5 (1999).
[14] Ambacher, O., Majewski, J., Miskys, C., Link, A., Hermann, M., Eickhoff, M., Stutzmann, M., Bernardini, F., Fiorentini, V., Tilak, V., Schaff, B., Eastman, L. F., J. Phys. C 14, 3399 (2002).
[15] Bernadini, F., Fiorentini, V., Vanderbilt, D., Phys. Rev. B 56, R10024 (1997).
[16] Bernadini, F., Fiorentini, V., Vanderbilt, D., Phys. Rev. B 63, 193201 (2001).
[17] Bernadini, F., Fiorentini, V., Phys. Rev. B 64, 085207 (2001).
[18] Fiorentini, V., Bernadini, F., Della Sala, F., Di Carlo, A., Lugli, P., Phys. Rev. B 60, 8849 (1999).
[19] Reznitsky, A., Klochikhin, A., Permogorov, S., Tenishew, L., Lundin, W., Usikov, A., Schmidt, M., Klingshirn, C., unpublished (2002).
[20] Monemar, B., Paskov, P. P., Pozina, G., Bergman, J. P., Paskova, T., Iwaya, M., Kamiyama, S., Amano, H., Akasaki, I., Phys. Stat. Sol. A 192, 21 (2002).
[21] Amano, H., Sawaki, N., Akasaki, I., Toyoda, Y., Appl. Phys. Lett. 48, 353-355 (1986).
[22] Darakchieva, V., Paskova, T., Paskov, P. P., Monemar, B., Askenov, N., Schubert, M., unpublished (2002).
[23] Paszkowicz, W., Powd. Diff. 14, 258 (1999).
[24] Polian, A., Grimsditch, M., Grzegory, I., J. Appl. Phys. 79, 3343-3344 (1996).
[25] Wright, AF, J. Appl. Phys. 82, 2833-2839 (1997).
[26] Barker, A. S., Ilegems, M., Phys. Rev. B 7, 743 (1973).
[27] Bernadini, F., Fiorentini, V., Phys. Rev. Lett. 79, 3958 (1997).
[28] Monemar, B., Paskov, P. P., Paskova, T., Bergman, J. P., Pozina, G., Chen, W. M., Hai, P. N., Buyanova, I. A., Amano, H., Akasaki, I., Mater. Sci. Eng. B 93, 112 (2002).
[29] Paskov, P. P., Holtz, P. O., Monemar, B., Mamiyama, S., Iwaya, M., Amano, H., Akasaki, I., unpublished (2002).
[30] Nardelli, Marco Buongiorno, Rapcewicz, Krzysztof, Bernholc, J., Appl. Phys. Lett. 71, 3135 (1997).
[31] Martinez-Pastor, J., Vinattieri, A., Carraresi, I., Collocci, M., Roussignol, P., Weimann, B., Phys. Rev. B 47, 10456 (1993).
[32] Musikhin, Yu. G., Gerthsen, D., Bedarev, D. A., Bert, N. A., Lundin, W. V., Tsatsulnikov, A. F., Sakharov, A. V., Usikov, A. S., Alferov, Zh. I., Krestnikov, I. L., Ledentsov, N. N., Hoffmann, A., Bimberg, D., Appl. Phys. Lett. 80, 2099 (2002).
[33] Coli, G., Bajaj, K. K., Li, J., Lin, J. Y., Xiang, H. X., Appl. Phys. Lett. 80, 2907 (2002).
[34] Davydov, V. Yu., Klochikhin, A. A., Emtsev, V. V ., Ivanov, S. V., Vekshin, V. V., Bechstedt, F., Furthmuller, J., Harima, H., Mudryi, A. V., Hashimoto, A., Yamamoto, A., Aderhold, J., Graul, J., Haller, E. E., Phys. Stat. Sol. B 230, R4 (2002).
[35] Bellaiche, L., Mattila, T., Wang, L. W., Wei, S. H., Zunger, A., Appl. Phys. Lett. 74, 1842 (1999).
[36] Singh, J., Bajaj, K. K., J. Appl. Phys. 57, 5433 (1985).
[37] Wang, T., Saeki, H., Bai, J., Shirahama, T., Lachab, M., Sakai, S., Eliseev, P., Appl. Phys. Lett. 76, 1737 (2000).
[38] Zhao, Q. X., Fu, Y., Holtz, P. O., Monemar, B., Bergman, J. P., Zhao, K. A., Sundaram, M., Merz, J. L., Gossard, A. C., Phys. Rev. B 43, 5035 (1991).
[39] Buyanova, I. A., Chen, W. M., Henry, A., Ni, W. X., Hansson, G. V., Monemar, B. , Phys. Rev. B 53, 9587 (1996).
[40] Pozina, G., Bergman, J. P., Monemar, B., Iwaya, M., Nitta, S., Amano, H., Akasaki, I., Appl. Phys. Lett. 77, 1638 (2000).
[41] Mayrock, O., Wunsche, H. J., Henneberger, F., Phys. Rev. B 62, 16870 (2000).
[42] Lantier, R., Rizzi, A., Luth, H., Mayrock, O., Wunsche, H. J., Henneberger, F., Lomascolo, M., Cingolani, R., “Optical emission from surface and buried AlGaN/GaN MQWs grown by MBE on 6H-SiC”, Proc. Int. Workshop on Nitride Semiconductors, IPAP Conference Series 1 (Tokyo), p. 166
[43] Wetzel, C., Takeuchi, T., Amano, H., Akasaki, I., Phys. Rev. B 61, 2159 (2000).
[44] Van der Walle, CG, Neugebauer, J, Appl. Phys. Lett. 70, 2577-2579 (1997).
[45] Monemar, B., Paskov, P. P., Haratizadeh, H., Holtz, P. O., Bergman, J. P., Kamiyama, S., Iwaya, M., Amano, H., Akasaki, I., unpublished (2002).

Keywords

Related content

Powered by UNSILO

Photoluminescence in n-doped In0.1Ga0.9N/In0.01Ga0.99N multiple quantum wells

  • B. Monemar (a1), P.P. Paskov (a1), J. P. Bergman (a1), G. Pozina (a1), V. Darakchieva (a1), M. Iwaya (a2) (a3), Satoshi Kamiyama (a2) (a3), H. Amano (a2) (a3) and I. Akasaki (a2) (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.