Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-01T08:31:57.359Z Has data issue: false hasContentIssue false

Vertical and horizontal distribution of phytoplankton around an oceanic archipelago of the Equatorial Atlantic

Published online by Cambridge University Press:  22 October 2015

Andressa Ribeiro De Queiroz*
Affiliation:
Departamento de Oceanografia, Universidade Federal de Pernambuco, Avenida Arquitetura s/n, 50740-550 Recife, Pernambuco, Brazil
Manuel Flores Montes
Affiliation:
Departamento de Oceanografia, Universidade Federal de Pernambuco, Avenida Arquitetura s/n, 50740-550 Recife, Pernambuco, Brazil
Pedro Augusto Mendes de Castro Melo
Affiliation:
Universidade Estadual de Santa Cruz (Programa de Pós-Graduação em Sistemas Aquáticos Tropicais), Campus Soane Nazaré de Andrade (Salobrinho), Km 16 – BR-415, 45662-900 Ilhéus, Bahia, Brazil
Rodolfo Araújo da Silva
Affiliation:
Departamento de Oceanografia, Universidade Federal de Pernambuco, Avenida Arquitetura s/n, 50740-550 Recife, Pernambuco, Brazil
Maria Luise Koening
Affiliation:
Departamento de Oceanografia, Universidade Federal de Pernambuco, Avenida Arquitetura s/n, 50740-550 Recife, Pernambuco, Brazil
*
Correspondence should be addressed to: A.R. De Queiroz, Departamento de Oceanografia, Universidade Federal de Pernambuco, Avenida Arquitetura s/n, 50740-550, Recife, Pernambuco, Brazil email: aribeiroq@yahoo.com.br
Get access

Abstract

The surrounding area of the St. Peter and St. Paul Archipelago (SPSPA) (0°55′10″N 29°20′33″W) was investigated in order to verify the physical and chemical influences in species composition and abundance, and the patterns of distribution of phytoplankton in the water column, especially in the thermocline depths. The expedition was held on board the Cruzeiro do Sul Hydro-oceanographic ship, from 21 to 23 July 2010 in two perpendicular and opposite transects. A cylinder-conical net and Niskin bottles were used. Two water masses were identified (Tropical Water and South Atlantic Central Water), and the thermocline depths varied from 40 to 110 m. A total of 128 species of phytoplanktonic organisms were identified, belonging to four phyla. The most conspicuous species was the cyanobacteria Trichodesmium thiebautii; nevertheless, 22 species were considered new registers for the region. The total phytoplanktonic density (1 × 103 to 183 × 103 cells l−1) was low and typical of oligotrophic regions, decreasing slightly with depth. Among the 35 species identified in the vertical distribution, 22 were present in the thermocline depth. The total density of Trichodesmium thiebautii, Oxytoxum longiceps and Protoperidinium minimum had significant correlations with the physical and chemical parameters. These data indicate that SPSPA can be associated to an island mass effect in the local oceanic circulation that mainly affects the physical and chemical characteristics of the surrounding waters. Consequently, these interactions influence the phytoplanktonic community, mainly those located at the end of the photic zone and those that are under the influence of thermocline oscillation.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Araujo, M. and Cintra, M. (2009) Modelagem matemática da circulação oceânica na região equatorial. In Viana, D.L., Hazin, F., Vieira, H. and Carvalho de Souza, M.A. (eds) O arquipélago São Pedro e São Paulo: 10 anos de Estação científica. Brasília, DF: SECIRM, pp. 106113.Google Scholar
Balech, E. (1988) Los dinoflagelados del Atlantico Sudoccindental. Madrid: Instituto Español de Oceanografia.Google Scholar
Barlow, L.G., Aiken, J., Holligan, P.M., Cummings, D.G., Maritonesa, S. and Hooker, S. (2002) Phytoplankton pigment and absorption characteristics along meriodinal transects in the Atlantic Ocean. Deep-Sea Research 49, 637660.Google Scholar
Boehlert, G.W. (1988) Current-topography interactions at midocean seamounts and the impact on pelagic ecosystems. GeoJournal 1, 4552.CrossRefGoogle Scholar
Boonyapiwat, S. (2000) Species composition, abundance and distribution of phytoplankton in the thermocline layer in the South China Sea, Area III: Western Philippines. In Proceedings of the Third Technical Seminar on Marine Fishery Resources Survey in the South China Sea, Area III: Western Philippines, 13–15 July 1999. Metro Manila: SEAFDEC, pp. 197216.Google Scholar
Boonyapiwat, S. (2001) Species composition, abundance and distribution of phytoplankton in the thermocline layer in the South China Sea, Area IV: Vietnamese Waters. In Proceedings of the SEAFDEC Seminar on Fishery Resources in the South China Sea, Area IV: Vietnamese Waters, pp. 292309.Google Scholar
Bröckel, K.V. and Meyerhöfer, M. (1999) Impact of rocks of Sao Pedro and Sao Paulo upon the quantity and quality of suspended particulate organic matter. Archive Fisheries Marine Research 47, 223238.Google Scholar
Campos, T.F.C., Petta, R.A., Theye, T., Sichel, S.E., Simões, L.S.A., Srivastava, N.K.S., Neto, J.V. and Andrade, F.G.G. (2009) Posição ímpar do Arquipélago São Pedro e São Paulo na diversidade ecológica da Terra. In Viana, D.L., Hazin, F., Vieira, H. and Carvalho de Souza, M.A. (eds) O arquipélago São Pedro e São Paulo: 10 anos de Estação científica. Brasília, DF: SECIRM, pp. 5564.Google Scholar
Capone, D.G., Zehr, J., Paerl, H.W., Bergman, B. and Carpenter, E.J. (1997) Trichodesmium, a globally significant marine Cyanobacterium. Science 276, 12211229.Google Scholar
Capone, D.G., Burns, J.A., Montoya, J.P., Subramaniam, A., Mahaffey, C., Gunderson, T., Michaels, A.F. and Carpenter, E.J. (2005) Nitrogen fixation by Trichodesmium spp.: an important source of new nitrogen to the tropical and subtropical North Atlantic Ocean. Global Biogeochemistry Cycles 19, doi: 10.1029/2004GB002331.Google Scholar
Cordeiro, T.A., Brandini, F.P., Rosa, R.S. and Sassi, R. (2013) Deep chlorophyll maximum in Western Equatorial Atlantic – How does it interact with islands slopes and seamounts? Marine Science 3, 3037.Google Scholar
Desikachary, T.V. (1959) Cyanophyta. New Delhi: Indian Council of Agricultural Research.Google Scholar
Doty, M.S. and Ogury, M. (1956) The island mass effect. Conseil International pour l'Exploration de la Mer 22, 3337.Google Scholar
Fennell, K. and Boss, E. (2003) Subsurface maxima of phytoplankton and chlorophyll: steady-state solutions from a simple model. Limnology Oceanographic 48, 15211534.Google Scholar
Flores Montes, M.J. (2003) Fatores que Influenciam na Produtividade dos Oceanos: A Importância do Fluxo de Difusão dos Nutrientes para a Biomassa do Fitoplâncton na Região Oceânica do Nordeste Brasileiro. Tese (Doutorado). Recife, Brazil: Universidade Federal de Pernambuco.Google Scholar
Furuya, K. and Marumo, R. (1983) The structure of the phytoplankton community in the subsurface chlorophyll maxima in the western North Pacific Ocean. Journal Plankton Research 5, 393406.Google Scholar
Gómez, F. (2005) A list of free-living dinoflagellate species in the world's oceans. Acta Botanica Croatica 64, 129212.Google Scholar
Grasshoff, K., Ehrhardt, M. and Kremling, K. (1983) Methods of seawater analysis, 2nd edn.New York: Verlag Chemie.Google Scholar
Hasle, G.R. (1978) The inverted-microscope method. In Sournia, A. (ed.) Mono-graphs on Oceanic Methodology. VI. Phytoplankton Manual. Paris: UNESCO, pp. 8896.Google Scholar
Hawser, S.P., O'Neil, J.M., Roman, M.R. and Coddl, G.A. (1992) Toxicity of blooms of the cyanobacterium Trichodesmium to zooplankton. Journal of Applied Phycology 4, 7986.Google Scholar
Hood, R.R., Coles, V.J. and Capone, D.G. (2004) Modeling the distribution of Trichodesmium and nitrogen fixation in the Atlantic Ocean. Journal of Geophysical Research: Oceans 109, 125.Google Scholar
Koening, M.L. and Oliveira, M.S. (2009) Estrutura da comunidade fitoplanctônica. In Viana, D.L., Hazin, F., Vieira, H. and Carvalho de Souza, M.A. (eds) O arquipélago São Pedro e São Paulo: 10 anos de Estação científica. Brasília, DF: SECIRM, pp. 117128.Google Scholar
Komárek, J. and Anagnostidis, K. (2005) Cyanoprokaryota 2. teil: Oscillatoriales. Süsswasserflora von Mitteleuropa. Alemanha: Elsevier Spektrum Ak. Verlag, 19 pp.Google Scholar
Lobo, E.A. and Leighton, G. (1986) Estrutura de las fitocenosis planctonicas de los sistemas de desembocaduras de rios y esteros de lazonacentral de Chile. Revista de Biología Marina y Oceanografía Santiago 22, 143170.Google Scholar
Macedo, S.J., Flores Montes, M.J. and Costa, K.M.P. (2009) Hidrologia. In Viana, D.L., Hazin, F., Vieira, H. and Carvalho de Souza, M.A. (eds) O Arquipélago de São Pedro e São Paulo: 10 anos de Estação Científica. Brasília, DF: SECIRM, pp. 101106.Google Scholar
Matteucci, S.D. and Colma, A. (1982) Metodologia para el estudio de la vegetacion. Washington: The Genral Secretarial of the Organization of American States, 167 pp. (Série Biologia – Monografia, 22.)Google Scholar
Medeiros, C., Macêdo, S., Feitosa, F. and Koening, M.L. (1999) Hydrography and phytoplankton biomass and abundance of north-east Brazilian waters. Archive Fisheries Marine Research 47, 133151.Google Scholar
Miguens, A.P. (1995) Navegação Costeira, Estimada e em Águas Restritas, Vol. I. Rio de Janeiro: Diretoria de Hidrografia e Navegação da Marinha.Google Scholar
Negri, A.P., Bunter, O., Jonesc, B. and Llewellyna, L. (2004) Effects of the bloom-forming alga Trichodesmium erythraeum on the pearl oyster Pinctada maxima. Aquaculture 232, 91102.Google Scholar
Niencheski, L.F., Baumgarten, M.G.Z., Roso, R.H. and Bastos, L.A.P. (1999) Oceanografia Química- levantamento bibliográfico e identificação do estado atual do conhecimento. Rio de Janeiro, Brazil: MMA, CIRM, FEMAR, 171 pp.Google Scholar
Nona, S.R., Agawin, A.T.S., Zarruk, K.K., Duarte, C.M. and Agustí, S. (2013) Variability in the abundance of Trichodesmium and nitrogen fixation activities in the subtropical NE Atlantic. Journal Plankton Research 35, 11261140.Google Scholar
Padmakumar, K.B., Smitha, B.R., Thomas, L.C., Fanimol, C.L., Sreerenjima, G., Menon, N.R. and Sanjeevan, V.N. (2010) Blooms of Trichodesmium erythraeum in the south eastern Arabian Sea during the onset of 2009 summer monsoon. Ocean Science Journal 45, 151157.Google Scholar
Philips, E.J., Badylak, S. and Grosskopf, T. (2002) Factors affecting the abundance of phytoplankton in a restricted subtropical lagoon, the Indian river lagoon, Florida, USA. Estuarine, Coastal and Shelf Science 55, 385402.Google Scholar
Pielou, E.C. (1977) Mathematical ecology. New York: Wiley.Google Scholar
Queiroz, A.R. (2011) Estrutura do microfitoplâncton no Arquipélago de São Pedro e São Paulo (lat. 00°56′2″N e long. 29°20′6″W): Estimativa da biomassa em carbono através do biovolume celular. Dissertação de Mestrado, Universidade Federal de Pernambuco, Recife, Brazil.Google Scholar
Racault, M.F., Le Quéré, C., Buitenhuisb, C.E., Sathyendramatha, S. and Platt, T. (2012) Phytoplankton phenology in the global ocean. Ecological Indicators 14, 152163.Google Scholar
Rezende, C.E., Andrade, L., Suzuki, M.S., Faro, B.C.M.T., Gonzalez, A.S.M. and Paranhos, R. (2007) Hidroquímica. In Valentin, J.L. (ed.) Características hidrobiológicas da região central da Zona Econômica Exclusiva brasileira (Salvador, BA, ao Cabo de São Tomé, RJ). (Série Documentos REVIZEE-SCORE Central.) Brasília: Ideal Gráfica e Editora, pp. 3160.Google Scholar
Santos, M., Moita, M.T., Bashmachnikov, I., Menezes, G.M., Carmo, V., Loureiro, C.M., Mendonça, A., Silva, A.F. and Martins, A. (2013) Phytoplankton variability and oceanographic conditions at Condor seamount, Azores (NE Atlantic). Deep-Sea Research 98(A), 5262.Google Scholar
Sarojini, Y.S. and Nittala, S. (2001) Vertical distribution of phytoplankton around Andaman and Nicobar Islands, Bay of Bengal. IJMS 30, 6569.Google Scholar
Shannon, C.E. (1948) A mathematical theory of communication. Bulletin of System Technology Journal 27, 379423.Google Scholar
Siqueira, A., Kolm, H.E. and Brandini, F.P. (2006) Offshore Distribution Patterns of the Cyanobacterium Trichodesmium erythraeum Ehrenberg and Associated Phyto- and Bacterioplankton in the Southern Atlantic Coast (Paraná, Brazil). Brazilian Archives of Biology and Technology 49, 323337.Google Scholar
Soares, J., Oliveira, A.P., Skielka, U.T. and Servain, J. (2009) O ar. In Hazin, F.H.V. (ed.) O Arquipélago de São Pedro e São Paulo: 10 anos de estação científica. Brasília: SECIRM, pp. 3844.Google Scholar
Souza, C.S. (2010) Condições hidroquímicas nas regiões dos bancos e ilhas oceânicas do nordeste brasileiro e sua Influência sobre a composição e distribuição de Chaetognata. Tese (Doutorado). Bahia, Brazil: Universidade Federal da Bahia (UFBA).Google Scholar
Souza, C.S., Luz, J.A.G. and Mafalda, P.O. Jr. (2010) Variations in the distribution of chlorophyll a and nutrients around seamounts and islands off North-Eastern Brazil (Lat. 0° and 6° S). Deep-Sea Research.Google Scholar
Stramma, L. and Schott, F. (1999) The mean flow field of the tropical Atlantic Ocean. Deep-Sea Research 46, 279303.Google Scholar
Strickland, J.D.H. and Parsons, T.R. (1972) A practical handbook of seawater analysis, 2nd edn. Ottawa: Bulletin and the Fisheries Research Board Canada, 310 pp.Google Scholar
Tenenbaum, D.R., Gomes, E.A.T. and Guimarães, G.P. (2007) Microorganismos Planctônicos: Pico, Nano e Micro. In Valentin, J.L. (ed.) Características hidrológicas da região central da Zona Econômica Exclusiva brasileira (Salvador, BA, ao Cabo de São Tomé, RJ). Brasília: Série Documentos REVIZEE/SCORE Central, pp. 83124.Google Scholar
Tiburcio, A.S.X.S., Koening, M.L., Macêdo, S.J. and Melo, P.A.M.C. (2011) Microphytoplankton community of São Pedro e São Paulo Archipelago (Atlantic North Equatorial): diurnal and spatial variation. Biota Neotropica 11, 203215.Google Scholar
Tomas, C.R. (1997) Identifying marine phytoplankton. San Diego: Academic Press.Google Scholar
Travassos, P.F., Hazin, H.V., Zagaglia, J.R., Adivíncula, R. and Schober, J. (1999) Thermohaline structure around seamounts and islands off North-Eastern Brasil. Archive of Fishery and Marine Research 47, 211222.Google Scholar
UNESCO (1973) International oceanographic tables. Wormley: UNESCO.Google Scholar
Utermöhl, H. (1958) Zur vervolkommung der quantitativen phytoplankton – methodik. Mitteilungen Internationale Vereiningung fuer Theoretische und Angewandte Limnologie 9, 138.Google Scholar
Valentin, J.L., Macedo-Saidah, F.E., Tenenbaum, D.R. and Silva, N.M.L. (1991) A diversidade específica para a análise das sucessões fitoplanctônicas. Aplicação ao ecossistema da ressurgência de Cabo Frio (RJ). Neritica 6, 726.Google Scholar
Valentin, J.L., Paranhos, R., Faro, B.C.M.T. and Gonzalez, A.S.M. (2007) Características hidrobiológicas da região central da Zona Econômica Exclusiva brasileira (Salvador, BA, ao Cabo de São Tomé, RJ). Série Documentos REVIZEE/SCORE-Central. Brasília: Ideal Gráfica.Google Scholar
Zagaglia, J.R. (1998) Caracterização da estrutura termoalina da Zona Econômica Exclusiva do Nordeste Brasileiro. Monografia de graduação, Departamento de Pesca, Universidade Federal Rural de Pernambuco, Recife, Brazil.Google Scholar