Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-25T21:50:58.443Z Has data issue: false hasContentIssue false

Abundance and distribution of the rapid expansive coral Oculina patagonica in the Northern Alborán Sea (Western Mediterranean)

Published online by Cambridge University Press:  08 April 2015

Alejandro Terrón-Sigler*
Affiliation:
Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain Asociación Hombre y Territorio, C/Betania no. 13, CP 41007 Sevilla, España
Pilar Casado-Amezúa
Affiliation:
Asociación Hombre y Territorio, C/Betania no. 13, CP 41007 Sevilla, España EU-US Marine Biodiversity Research Group, Franklin Institute, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain
Free Espinosa Torre
Affiliation:
Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain
*
Correspondence should be addressed to: A. Terrón-Sigler, Asociación Hombre y Territorio, C/Betania no. 13, CP 41007 Sevilla, España email: terronsigler@hombreyterritorio.org
Get access

Abstract

We describe for the first time the distribution and abundance of Oculina patagonica along the coasts of the Northern Alborán Sea (Andalusia Region, Southern Iberian Peninsula), which corresponds to the southernmost region of the known distribution range of the coral. After surveying 693 km of the Andalusia coastline, along three different depths, we showed that O. patagonica was restricted to the eastern shores of the Alborán Sea. It was only present in 7 out of 195 sampling stations in the eastern region along the studied coasts and at the depth range of 0–3 m. Moreover, we observed that the distribution of the species along the northern coasts of the Alborán Sea might be related to substrate availability and sea surface temperature. In the localities in which its presence was described, the annual mean sea water temperature was in the range of 18–21°C. In relation to substrate availability, it must be noted that the distribution of hard substrata – ideal for O. patagonica settlement and growth – along the sampling area, is not uniform in the study area; this might affect the continuity of the distribution of the species. Local studies such as this one are of importance as a starting point for delineating the species' relationship with its habitat, population boundaries and population ecology. Given the fast expansion of this species along the Mediterranean coasts, this study could serve as a basis for continuous monitoring of the spread of the species and its long-term effects on the ecosystem.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguilar, R., Akissou, M., Templado, J. and Romani, M. (2011) Scientific rationale for the proposed CIESM Near Atlantic Marine Peace Park (zone 1). In Briand, F. (ed.) Marine Peace Parks in the Mediterranean – a CIESM proposal. Monaco: CIESM Workshop, no. 41, pp. 4349.Google Scholar
Astanei, I., Gosling, E., Wilson, J. and Powell, E. (2005) Genetic variability and phylogeography of the invasive zebra mussel, Dreissena polymorpha (Pallas). Molecular Ecology 14, 16551666.Google Scholar
Benedetti-Cecchi, L., Airoldi, L., Abbiati, M. and Cinelli, F. (1996) Estimating the abundance of benthic invertebrates: a comparison of procedures and variability between observers. Marine Ecology Progress Series 138, 93101.Google Scholar
Bitar, G. and Zibrowius, H. (1997) Scleractinian corals from Lebanon, Eastern Mediterranean, including a non-lessepsian invading species (Cnidaria: Scleractinia). Scientia Marina 61, 227231.Google Scholar
Boudouresque, C.F. (2004) Marine biodiversity in the Mediterranean: status of species, populations and communities. Scientific Reports of Port-Cros National Park, France 20, 97146.Google Scholar
Bramanti, L., Vielmini, I., Rossi, S., Stefano, S. and Santangelo, G. (2011) Involvement of recreational SCUBA divers in emblematic species monitoring: the case of Mediterranean red coral (Corallium rubrum). Journal for Nature Conservation 19, 312318.Google Scholar
Calvo, E., Simó, R., Coma, R., Ribes, M., Pascual, J., Sabatés, A., Gili, J.M. and Pelejero, C. (2011) Effects of climate change on Mediterranean marine ecosystems: the case of the Catalan Sea. Climate Research 50, 129.Google Scholar
Casado-Amezua, P., Goffredo, S., Templado, J. and Machordom, A. (2012) Genetic assessment of population structure and connectivity in the threatened Mediterranean coral Astroides calycularis (Scleractinia, Dendrophylliidae) at different spatial scales. Molecular Ecology 21, 36713685.Google Scholar
Çinar, M.E., Bilecenoglu, M., Öztürk, B. and Can, A. (2006) New records of alien species on the Levantine coasts of Turkey. Aquatic Invasions 1, 8490.Google Scholar
CMA (2012) Programa de Gestión Sostenible del Medio Marino Andaluz. Consejería de Agricultura, Pesca y Medio Ambiente Report, 109 pp.Google Scholar
Coll, M., Piroddi, C., Steenbeek, J., Kascher, K., Lasram, F.B.R., Aguzzi, J., Ballesteros, E., Bianchi, C.N., Corbera, J., Dailianis, T., Danovaro, R., Estrada, M., Froglia, C., Galil, B. S., Gasol, J.M., Gertwagen, R., Gil, J., Guilhaumon, F., Kesner-Reyes, K., Miltiadis-Spyridon, K., Koukouras, A., Lampadariou, N., Laxamana, E., López-Fé de la Cuadra, C.M., Lotze, H.K., Martin, D., Mouillot, D., Oro, D., Raicevich, S., Rius-Barile, J., Saiz-Salinas, J.I., San Vicente, C., Somot, S., Templado, J., Turon, X., Vafidis, D., Villanueva, E. and Voultsiadou, R.E. (2010) The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS ONE 5, e11842.Google Scholar
Coma, R., Serrano, E., Linares, C., Ribes, M., Díaz, D. and Ballesteros, E. (2011) Sea Urchins Predation Facilitates Coral Invasion in a Marine Reserve. PLoS ONE 6, e22017, doi: 10.1371/journal.pone.0022017.Google Scholar
Eriksson, O. and Jakobsson, A. (1998) Abundance, distribution and life histories of grassland plants: a comparative study of 81 species. Journal of Ecology 86, 922933.Google Scholar
Fine, M., Zibrowius, H. and Loya, Y. (2001) Oculina patagonica: a non-lessepsian scleractinian coral invading the Mediterranean Sea. Marine Biology 138, 11951203.Google Scholar
Gage, J.D. (2004) Diversity in deep-sea benthic macrofauna: the importance of local ecology, the larger scale, history and the Antarctic. Deep Sea Research Part II: Topical studies in oceanography 51, 16891708.Google Scholar
García-Raso, J.E., Luque, A.A., Templado, J., Salas, C., Hergueta, E., Moreno, D. and Calvo, M. (1992) Fauna y flora marinas del Parque Natural de Cabo de Gata-Níjar. Madrid: Edición propia, 288 pp.Google Scholar
Holt, R.D. (2003) On the evolutionary ecology of species ranges. Evolutionary Ecology Research 5, 159178.Google Scholar
Magurran, A.E., Khachonpisitsak, S. and Ahmad, A.B. (2011) Biological diversity of fish communities: patterns and process. Journal of Fish Biology 79, 13931412.Google Scholar
Ramos-Esplà, A.A. (1985) La Reserva Marina de la Isla Plana o Nueva Tabarca (Alicante). Apuntes para una ordenación de su entorno. In Ramos, A.A. (ed.) La Reserva Marina de la Isla Plana o Nueva tabarca (Alicante). Publ. Universidad Ayuntamiento de Alicante, pp. 169181.Google Scholar
Rodolfo-Metalpa, R., Richard, C., Allemand, D., Bianchi, C.N., Morri, C. and Ferrier-Pagès, C. (2006) Response of zooxanthellae in symbiosis with the Mediterranean corals Cladocora caespitosa and Oculina patagonica to elevated temperatures. Marine Biology 150, 4555.Google Scholar
Rubio-Portillo, E., Vázquez-Luis, M., Izquierdo Muñoz, A. and Ramos Esplá, A.A. (2014) Distribution patterns of alien coral Oculina patagonica De Angelis D'Ossat, 1908 in western Mediterranean Sea. Journal of Sea Research 85, 372378.Google Scholar
Salomidi, M., Katsanevakis, S., Issaris, Y., Tsiamis, K. and Katsiaras, N. (2013) Anthropogenic disturbances of coastal habitats promotes the spread of the introduced scleractinian coral Oculina patagonica in the Mediterranean Sea. Biological Invasions 15, 19611971.Google Scholar
Sartoretto, S., Harmelin, J.G., Bachet, F., Bejaoui, N., Lebrun, O. and Zibrowius, H. (2008) The alien coral Oculina patagonica De Angelis, 1908 (Cnidaria, Scleractinia) in Algeria and Tunisia. Aquatic Invasions 3, 173180.Google Scholar
Serrano, E., Coma, R. and Ribes, M. (2012) A phase shift from macroalgal to coral dominance in the Mediterranean. Coral Reefs 31, 1199.Google Scholar
Serrano, E., Coma, R., Ribes, M., Weitzmann, B., García, M. and Ballesteros, E. (2013) Rapid northward spread of a zooxanthellate coral enhanced by artificial structures and sea warming in the Western Mediterranean. PloS One 8, e52739, doi: 10.1371/journal.pone.0052739.Google Scholar
Templado, J. (2014) Future trends of Mediterranean biodiversity. In Goffredo, S. and Dubinsky, Z. (eds) The Mediterranean Sea: its history and present challenges. New York: Springer, pp. 479498.Google Scholar
Zibrowius, H. (1974) Oculina patagonica, scléractiniaire hermatypique introduit en Méditerranée. Helgoländer Wissenshaftliche Meeresuntersuchungen 26, 153173.Google Scholar
Zibrowius, H. (1980) Les scléractiniaires de la Mediterranée et de l’Atlantique nord-oriental. Mem. Inst. Oceanogr. (Monaco) 11, 1284.Google Scholar
Zibrowius, H. (1983) Nouvelles données sur la distribution de quelques scléractiniaires ‘Méditerranéens’ á l’Est et é l’Ouest du détroit de Gibraltar. Rapp p-v Reun, Bull. Comm. Int. Explor. Sci. Mer. Mediterr. 28, 307309.Google Scholar
Zibrowius, H. (1992) Ongoing modification of the Mediterranean marine fauna and flora by the establishment of exotic species. Mesogee 51, 83107.Google Scholar
Zibrowius, H. and Ramos, A. (1983) Oculina patagonica, scléractiniaire exotique en Méditerranée – nouvelles observations dans le Sud-Est de l'Espagne. Rapports Commission Internationale pour l'Exploration Scientifique de la Mer Méditerranée (CIESM) 28, 297301.Google Scholar