Skip to main content Accessibility help
×
×
Home

Decomposition matrices for d-Harish-Chandra series: the exceptional rank two cases

  • Maria Chlouveraki (a1) and Hyohe Miyachi (a2)

Abstract

We calculate all decomposition matrices of the cyclotomic Hecke algebras of the rank two exceptional complex reflection groups in characteristic zero. We prove the existence of canonical basic sets in the sense of Geck–Rouquier and show that all modular irreducible representations can be lifted to the ordinary ones.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Decomposition matrices for d-Harish-Chandra series: the exceptional rank two cases
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Decomposition matrices for d-Harish-Chandra series: the exceptional rank two cases
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Decomposition matrices for d-Harish-Chandra series: the exceptional rank two cases
      Available formats
      ×

Copyright

References

Hide All
[1]Ariki, S., ‘On the decomposition numbers of the Hecke algebra of G(m,1,n)’, J. Math. Kyoto Univ. 36 (1996) 789808.
[2]Ariki, S. and Mathas, A., ‘The representation type of Hecke algebras of type B’, Adv. Math. 181 (2004) 134159.
[3]Broué, M., ‘Equivalences of blocks of group algebras’, Finite-dimensional algebras and related topics (Ottawa, ON, 1992), NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences 424 (Kluwer Academic, Dordrecht, 1994) 126.
[4]Broué, M. and Malle, G., ‘Zyklotomische Heckealgebren’, Astérisque 212 (1993) 119189.
[5]Broué, M., Malle, G. and Michel, J., ‘Generic blocks of finite reductive groups’, Astérisque 212 (1993) 792.
[6]Broué, M., Malle, G. and Michel, J., ‘Towards spetses I’, Transform. Groups 4 (1999) no. 2–3, 157218.
[7]Broué, M., Malle, G. and Rouquier, R., ‘Complex reflection groups, braid groups, Hecke algebras’, J. Reine Angew. Math. 500 (1998) 127190.
[8]Broué, M. and Michel, J., ‘Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne–Lusztig associées’, Finite reductive groups (Luminy, 1994), Progress in Mathematics 141 (Birkhäuser, Boston, MA, 1997) 73139.
[9]Chlouveraki, M., Blocks and families for the cyclotomic Hecke algebras, Lecture Notes in Mathematics 1981 (Springer, Berlin, Heidelberg, 2009).
[10]Chlouveraki, M. and Jacon, N., ‘Schur elements and basic sets for cyclotomic Hecke algebras’, J. Algebra Appl. 10 (2011) 979993.
[11]Chuang, J. and Miyachi, H., ‘Generic degree ratios at roots of unity’, in The 10th Workshop on Representation Theory of Algebraic Groups and Quantum Groups – in honor of Prof. Shoji and Prof. Shinoda’s 60th birthdays, S. Ariki et al., Preprint,http://www.math.nagoya-u.ac.jp/∼miyachi/articles/raq10pro07.pdf.
[12]Dipper, R., James, G. and Murphy, E., ‘Hecke algebras of type B n at roots of unity’, London Math. Soc. 70 (1995) 505528.
[13]Geck, M., ‘Brauer trees of Hecke algebras’, Comm. Algebra 20 (1992) 29372973.
[14]Geck, M., Beiträge zur Darstellungstheorie von Iwahori–Hecke–Algebren (Habilitations-schrift, RWTH Aachen, 1993).
[15]Geck, M., Modular representations of Hecke algebras, Group Representation Theory (EPFL Press, Lausanne, 2007) 301353.
[16]Geck, M. and Jacon, N., ‘Canonical basic sets in type B n’, J. Algebra 306 (2006) no. 1, 104127.
[17]Geck, M. and Pfeiffer, G., Characters of Coxeter groups and Iwahori–Hecke algebras, LMS Monographs New Series 21 (Oxford University Press, 2000).
[18]Geck, M. and Rouquier, R., Centers and simple modules for Iwahori–Hecke algebras, Progress in Mathematics 141 (Birkhäuser, 1997) 251272.
[19]Geck, M. and Rouquier, R., ‘Filtrations on projective modules for Iwahori–Hecke algebras’, Modular representation theory of finite groups (Charlottesville, VA, 1998) (de Gruyter, Berlin, 2001) 211221.
[20]Genet, G. and Jacon, N., ‘Modular representations of cyclotomic Hecke algebras of type G(r,p,n)’, Int. Math. Res. Not. 2006 (2006) , doi:10.1155/IMRN/2006/93049.
[21]Ginzburg, V., Guay, N., Opdam, E. and Rouquier, R., ‘On the category 𝒪 for rational Cherednik algebras’, Invent. Math. 154 (2003) no. 3, 617651.
[22]Jacon, N., ‘On the parametrization of the simple modules for Ariki–Koike algebras at roots of unity’, J. Math. Kyoto Univ. 44 (2004) no. 4, 729767.
[23]Malle, G., Degrés relatifs des algèbres cyclotomiques associées aux groupes de réflexions complexes de dimension deux, Progress in Mathematics 141 (Birkhäuser, 1996) 311332.
[24]Malle, G. and Michel, J., ‘Constructing representations of Hecke algebras for complex reflection groups’, LMS J. Comput. Math. 13 (2010) 426450.
[25]Malle, G. and Rouquier, R., ‘Familles de caractères des groupes de réflexions complexes’, Represent. Theory 7 (2003) 610640 (electronic).
[26]Nagao, H. and Tsushima, Y., Representations of finite groups (Academic Press, Boston, MA, 1989).
[27]Uglov, D., ‘Canonical bases of higher-level q-deformed Fock spaces and Kazhdan–Lusztig polynomials’, Physical combinatorics (Kyoto, 1999), Progress in Mathematics 191 (Birkhäuser, Boston, MA, 2000) 249299.
[28]Uno, K., ‘On representations of nonsemisimple specialized Hecke algebras’, J. Algebra 149 (1992) no. 2, 287312.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

LMS Journal of Computation and Mathematics
  • ISSN: -
  • EISSN: 1461-1570
  • URL: /core/journals/lms-journal-of-computation-and-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed