Skip to main content Accessibility help
×
Home

Vortex structures and turbulence emerging in a supernova 1987a configuration: Interactions of “complex” blast waves and cylindrical/spherical bubbles

  • SHUANG ZHANG (a1), NORMAN J. ZABUSKY (a1) and KATSUNOBU NISHIHARA (a2)

Abstract

We examine the interaction of both cylindrical and spherical bubbles (2D) and a complex blast wave, which consists of an approaching shock/contact discontinuity/shock (Kang et al., 2001a, 2001b). Such configurations may arise following a supernova explosion, for example, SN 1987A, where a complex blast wave is presently approaching a high density “circumstellar ring” (CR) (Borkowski et al., 1997). Using simulations with the piecewise parabolic method algorithm (Colella & Woodward, 1984), we emphasize the appearance of vortex bilayers, vortex projectiles, and turbulent domains on the downstream and upstream sides of the bubble. We believe that the interfacial deformation of the CR is associated with a strong blast-wave driven accelerated inhomogeneous flow instability in a high density medium and thus will have a different character than the more common planar shock-driven Richtmyer–Meshkov instability.

Copyright

Corresponding author

Address correspondence and reprint requests to: Norman J. Zabusky, Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Rd., Piscataway, NJ 08854-8058, USA. E-mail: nzabusky@caip.rutgers.edu

References

Hide All

REFERENCES

Borkowski, Blondin & McCray. (1997). X-Ray and ultraviolet line emission from SNR 1987A. Astrophys. J. 477, 281293.
Colella, P. & Woodward, P.R. (1984). The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54, 174201.
Kang, Y.-G., Nishihara, K., Nishimura, H., Takabe, H., Sunahara, A., Norimatsu, T., Kim, H., Nakatsuka, M., Kong, H.J. & Zabusky, N.J. (2001a). Blast-wave–sphere interaction using a laser-produced plasma: An experiment motivated by supernova 1987A. Phys. Rev. E 64, 047402.
Kang, Y.-G., Nishimura, H., Takabe, H., Nishihara, K., Sunahara, A., Norimatsu, T., Kim, H., Nakatsuka, M. & Kong, H.J. (2001b). Laboratory simulation of the collision of Supernova 1987A with its circumstellar ring nebula. Plasma Dyn. 27, 843851.
Michael, E., McCray, R., Pun, C.S.J., Garnavich, P., Challis, P., Kirshner, R.P., Raymond, J., Borkowski, K., Chevalier, R., Filippenko, A.V., Fransson, C., Lundqvist, P., Panagia, N., Phillips, M.M., Sonneborn, G., Suntzeff, N.B., Wang, L. & Wheeler, J.C. (1998). Hubble space telescope spectroscopy of Spot 1 on the Circumstellar Ring of SN 1987A. Astrophys. J. 542, L53.
Panagia, N., Scuderi, S., Gilmozzi, R., Challis, P.M., Garnavich, P.M. & Kirshner, R.P. (1996). HST-FOS observations of the inner circumstellar ring of SN 1987A. Astrophys. J. 459, L17.
Plait, P.C., Lundqvist, P., Chevalier, R.A. & Kirshner, R.P. (1995). HST observations of the ring around SN 1987A. Astrophys. J. 439, 730.
Wouchuk, J.G. & Nishihara, K. (1997). Asymptotic growth in the linear Richtmyer–Meshkov instability. Phys. Plasmas 4, 10281038.
Yang, Y., Zhang, Q. & Sharp, D.H. (1994). Small amplitude theory of Richtmyer–Meshkov instability. Phys. Fluids A 5, 18561873.
Zabusky, N.J. & Zeng, S.-M. (1998). Shock cavity implosion morphologies and vortical projectile generation in axisymmetric shock-spherical F/S bubble interactions. J. Fluid Mech. 362, 327346.
Zabusky, N.J. (1999). Vortex paradigm for accelerated inhomogeneous flows: Visiometrics for the Rayleigh–Taylor and Richtmyer–Meshkov environments. Ann. Rev. Fluid Mech. 31, 495535.

Keywords

Related content

Powered by UNSILO

Vortex structures and turbulence emerging in a supernova 1987a configuration: Interactions of “complex” blast waves and cylindrical/spherical bubbles

  • SHUANG ZHANG (a1), NORMAN J. ZABUSKY (a1) and KATSUNOBU NISHIHARA (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.