Skip to main content Accessibility help

Trends in stimulated Brillouin scattering and optical phase conjugation

  • M. Ostermeyer (a1), H.J. Kong (a2), V.I. Kovalev (a3) (a4), R.G. Harrison (a3), A.A. Fotiadi (a5) (a6), P. Mégret (a5), M. Kalal (a7), O. Slezak (a7), J.W. Yoon (a2), J.S. Shin (a2), D.H. Beak (a2), S.K. Lee (a8), Z. Lü (a9), S. Wang (a9), D. Lin (a9), J.C. Knight (a10), N.E. Kotova (a4), A. Sträßer (a1), A. Scheikh-Obeid (a1), T. Riesbeck (a11), S. Meister (a11), H.J. Eichler (a11), Y. Wang (a9), W. He (a9), H. Yoshida (a12), H. Fujita (a12), M. Nakatsuka (a12), T. Hatae (a13), H. Park (a14), C. Lim (a14), T. Omatsu (a15) (a16), K. Nawata (a15), N. Shiba (a15), O.L. Antipov (a17), M.S. Kuznetsov (a17) and N.G. Zakharov (a17)...


An overview on current trends in stimulated Brillouin scattering and optical phase conjugation is given. This report is based on the results of the “Second International Workshop on stimulated Brillouin scattering and phase conjugation” held in Potsdam/Germany in September 2007. The properties of stimulated Brillouin scattering are presented for the compensation of phase distortions in combination with novel laser technology like ceramics materials but also for e.g., phase stabilization, beam combination, and slow light. Photorefractive nonlinear mirrors and resonant refractive index gratings are addressed as phase conjugating mirrors in addition.


Corresponding author

Address correspondence and reprint requests to: Martin Ostermeyer, University of Potsdam, Institute of Physics, Nonlinear Optics and Experimental Quantum Information Processing, Am Neuen Palais 10, 14469 Potsdam, Germany. E-mail:


Hide All
Agnesi, A., Carra, L., Pirzio, F., Reali, G., Tomaselli, A., Scarpa, D. & Vacchi, C. (2006 a). Amplification of a low-power picosecond Nd:YVO4 laser by a diode-laser side-pumped grazing-incidence slab amplifier. IEEE J. Quant. Electron 42, 772776.
Agnesi, A., Carra, L., Pirzio, F., Scarpa, D., Tomaselli, A., Reali, G. & Vacchi, C. (2006 b). High-gain diode-pumped amplifier for generation of microjoule-level picosecond pulses. Opt. Express 14, 92449249.
Amano, S. & Mochizuki, T. (2001). High average and high peak brightness slab laser. IEEE J. Quantum Electron 37, 296303.
Antipov, O.L., Belyaev, S.I., Chausov, D.V. & Kuzhelev, A.S. (1998 a). Resonant two-wave mixing of optical beams by refractive index and gain gratings in inverted Nd:YAG. J. Opt. Soc. America B. 15, 22762281.
Antipov, O.L., Belyaev, S.I., Kuzhelev, A.S. & Zinov'ev, A.P. (1998 b). Nd:YAG laser with cavity formed by population inversion gratings. Proc. SPIE 3267, 181190.
Antipov, O.L., Bredikhin, D.V., Eremeykin, O.N., Kuznetsov, M.S., Savikin, A.P. & Vorob'ev, V.A. (2003). Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals. IEEE J. Quantum Electron 39, 910918.
Antipov, O.L., Chausov, D.V. & Kuzhelev, A.S. (1999 a). Formation of the cavity in a self-starting high-average power Nd:YAG laser oscillator. Opt. Express 5, 286292.
Antipov, O.L., Chausov, D.V., Kuzhelev, A.S. & Zinov'ev, A.P. (1999 b). Dynamics of refractive index changes in a Nd:YAG laser crystal under Nd3+-ions excitation. J. Opt. Soc. America B. 16, 10721079.
Antipov, O.L., Chausov, D.V., Kuzhelev, A.S., Vorob'ev, V.A. & Zinov'ev, A.P. (2001). 250-W average-power Nd:YAG laser with self-adaptive cavity completed by dynamic refractive-index gratings. IEEE J. Quantum Electron 37, 716724.
Antipov, O.L., Damzen, M.J., Eremeykin, O.N. & Minassian, A. (2004 a). Efficient continuous-wave generation in a self-organizing diode-pumped Nd:YVO4 laser with a reciprocal dynamic holographic cavity. Opt. Lett. 29, 23902392.
Antipov, O.L., Eremeykin, O.N., Ievlev, A.V. & Savikin, A.P. (2004 b) Diode-pumped Nd:YAG laser with reciprocal dynamic holographic cavity. Opt. Express 12, 43134319.
Antipov, O.L., Eremeykin, O.N., Savikin, A.P., Zakharov, N.G. & Zinoviev, A.P. (2006). Q-switch and mode-locking in diode-pumped solid-state lasers with dynamic holographic cavity. Conference on Solid-state and Fiber Coherent Light Sources. Pisa, Italy.
Antipov, O.L., Kuzhelev, A.S., Vorob'yov, V.A. & Zinov'ev, A.P. (1998 c). Pulse repetitive Nd:YAG laser with distributed feedback by self-induced population grating. Opt. Commun 152, 313318.
Antipov, O.L., Lobanov, S.N., Nekorkin, S.M. & Zvonkov, B.N. (2004 c). Self-organizing diode laser with cavity formed by dynamic gratings. Proc. SPIE 5452, 183191.
Auerbech, J.M., Holmes, N.C., Hunt, J.T. & Linford, G.J. (1979). Closure phenomena in pinholes irradiated by Nd laser pulses. Appl. Opt. 18, 24952499.
Azuma, Y., Shibata, N., Horiguchi, T. & Tateda, M. (1988). Wavelength dependence of Brillouin-gain spectra for single-mode fibres. Electron. Lett. 24, 250252.
Baldwin, G.D. & Riedel, E.P. (1967). Measurements of dynamic optical distortion in Nd-Doped glass laser rods. J. Appl. Phys. 38, 27262738.
Basov, N.G., Efimkov, V.F., Zubarev, I.G., Kotov, A.V., Mikhailov, S.I. & Smirnov, M.G. (1979). Influence of certain radiation parameters on wavefront reversal of a pump wave in a Brillouin mirror. Sov. J. Quantum Electron 9, 455458.
Batani, D., Dezulian, R., Redaelli, R., Benocci, R., Stabile, H., Canova, F., Desai, T., Lucchini, G., Krousky, E., Masek, K., Pfeifer, M., Skala, J., Dudzak, R., Rus, B., Ullschmied, J., Malka, V., Faure, J., Koenig, M., Limpouch, J., Nazarov, W., Pepler, D., Nagai, K., Norimatsu, T. & Nishimura, H. (2007). Recent experiments on the hydrodynamics of laser-produced plasmas conducted at the PALS laboratory. Laser Part. Beams 25, 127141.
Bel'dyugin, I.M., Efimkov, V. F., Mikhailov, S. I. & Zubarev, I. G. (2005). Amplification of weak stokes signals in the transient regime of stimulated Brillouin scattering. J. Russian Laser Research 26, 112.
Bernard, J.E. & Alcock, A. J. (1993). High-efficiency diode-pumped Nd:YVO4 slab laser. Opt. Lett. 18, 968970.
Borisov, B.N., Borodulina, O.S., Kruzhilin, Yu.I., Maslakov, S.Yu. & Melnikov, A.V. (1983). Pulse-periodic neodymium laser with wavefront reversal in a stimulated-Brillouin-scattering mirror and with frequency doubling. Sov. J. Quantum Electron. 13, 14111412.
Bowers, M.W. & Boyd, R.W. (1998). Phase locking via Brillouin-enhanced four-wave-mixing phase conjugation. IEEE J. Quantum Electron 34, 634644.
Boyd, R.W. & Gauthier, D. J. (2002). “Slow” and “fast” light. Prog. Opt. 43, 497530.
Boyd, R.W., Rzazewski, K. & Narum, P. (1990). Noise initiation of stimulated Brillouin scattering. Phys. Rev. A 42, 55145521.
Brignon, A. & Huignard, J.-P. (2003). Phase Conjugate Laser Optics New York: Wiley-Interscience.
Brignon, A., Huignard, J.-P. & Sillard, P. (1998). Gain-grating analysis of a self-starting self-pumped phase-conjugate Nd: YAG loop resonator. IEEE J. Quantum Electron 34, 465472.
Brown, D.C. (1998). Nonlinear thermal distortion in YAG rod amplifiers. IEEE J. Quantum Electron 34, 23832392.
Bruesselbach, H. & Sumida, D. (1996). 69-W-average-power Yb:YAG laser. Opt. Lett. 21, 480483.
Chiao, R.Y., Townes, C.H. & Stoicheff, B.P. (1964). Stimulated Brillouin scattering and coherent generation of intense hypersonic waves. Phys. Rev. Lett. 12, 592595.
Chu, R.J., Kanefsky, M. & Falk, J. (1992). Numerical study of transient stimulated Brillouin scattering. J. Appl. Phys. 71, 46534658.
Clarkson, W.A., Felgate, N.S. & Hanna, D.C. (1999). Simple method for reducing the depolarization loss resulting from thermally induced birefringence in solid-state lasers. Opt. Lett. 24, 820822.
Cotter, D. (1982). Stimulated Brillouin scattering in optical fibers. J. Opt. Commun. 4, 1019.
Couderc, V., Louradour, F. & Barthelemy, A. (1999). 2.8 ps pulses from a mode-locked diode pumped Nd:YVO4 laser using quadratic polarization switching. Opt. Commun. 166, 103111.
Crofts, G.J., Damzen, M.J. & Minassian, A. (1997). Self-starting Ti:sapphire holographic laser oscillator. Opt. Lett. 22, 697699.
Dahan, D. & Eisenstein, G. (2005). Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametrical amplifier: A route to all optical buffering. Opt. Exp. 13, 62346249.
Damzen, M.J., Trew, M., Rosas, E. & Crofts, G.J. (2001). Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 W output power and 64% conversion efficiency. Opt. Commun. 196, 237241.
Damzen, M.J., Green, R.P.M. & Syed, K.S. (1995). Self-adaptive solid-state oscillator formed by dynamic gain-gratings holograms. Opt. Lett. 20, 17041706.
Dane, C.B. & Hackel, L.A. (2004). Phase Conjugate Laser Optics (Brignon, A. and Huignard, J.-P., eds.). Chap. 5. New York: John Wiley & Sons.
Dane, C.B., Neuman, W.A. & Hackel, L.A. (1994 a). High-energy SBS compression. IEEE Quantum Electron QE-30, 19071915.
Dane, C.B., Zapata, L.E., Neuman, W.A., Norton, M.A. & Hackel, L.A. (1994 b). Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction. IEEE Quantum Electron. QE-31, 148162.
Danson, C.N., Brummitt, P.A., Clarke, R.J., Collier, I., Fell, B., Frackiewicz, A.J., Hawkes, S., Hernandez-Gomez, C., Holligan, P., Hutchinson, M.H.R., Kidd, A., Lester, W.J., Musgrave, I.O., Neely, D., Neville, D.R., Norreys, P.A., Pepler, D.A., Reason, C., Shaikh, W., Winstone, T.B., Wyatt, R.W.W. & Wyborn, B.E. (2005). Vulcan petawatt: Design, operation and interactions at 5X1020 Wcm−2. Laser Part. Beams 23, 8793.
Dascalu, T., Taira, T. & Pavel, N. (2002). 100-W quasi-continuous-wave diode radially pumped microchip composite Yb:YAG laser. Opt. Lett. 27, 17921799.
Ding, Y., , Z. & He, W. (2002 a). The influence of the ratio of seed to pump energy on Brillouin amplification. Acta Phys. Sin. 51, 2767.
Ding, Y., , Z. & He, W. (2002 b). Study of beam combination by stimulated Brillouin scattering. High Power Laser Part. Beams 14, 353.
Du, K., Li, D., Zhang, H., Shi, P., Wei, X. & Diart, R. (2003). Electro-optically Q-switched Nd:YVO4 slab laser with a high repetition rate and a short pulse width. Opt. Lett. 28, 8789.
Eichler, H.J., Haase, A., Kumde, J. & Mehl, O. (1997 a). Fiber phase conjugator as reflecting mirror in a MOPA arrangement. Proc. SPIE 2986, 4654.
Eichler, H.J., Kunde, J. & Liu, B. (1997 b). Quarz fiber phase conjugators with high fidelity and reflectivity. Opt. Commun. 139, 327334.
Eichler, H.J., Mocofanescu, A., Riesbeck, T., Risse, E. & Bedau, D. (2002). Stimulated Brillouin scattering in multimode fibers for optical phase conjugation. Opt. Commun. 208, 427431.
Eimerl, D., Chernyak, V.M., Pergament, M.I., Smirnov, R.V. & Sokolov, V.I. (1995). Phase conjugation in short pulse megajoule class lasers. Proc. SPIE 2633, 3646.
Endo, A. (2004). High power laser plasma EUV light source for lithography. Proc. SPIE 5448, 704711.
Fabelinskii, I.L. (1968). Molecular Scattering of Light. New York: Plenum Press.
Fan, T.Y. (2005). Laser beam combining for high-power high-radiance sources. IEEE J. Sel. Topics Quantum Electron 11, 567577.
Farrell, D. & Damzen, M.J. (2007). High power scaling of a passively mode locked laser oscillator in a bounce geometry. Opt. Exp. 15, 47814786.
Fedosejevs, R. & Offenberger, A.A. (1985). Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier. IEEE J. Quantum Electron 21, 15581562.
Fotiadi, A.A., Kiyan, R., Deparis, O., Mégret, P. & Blondel, M. (2002). Statistical properties of stimulated Brillouin scattering in single mode optical fibers above threshold. Opt. Lett. 27, 8385.
Gaeta, A.L. (1990). Stochastic and deterministic fluctuations in stimulated Brillouin scattering. Ph.D Thesis, Rochester, NY: University of Rochester.
Gaeta, A.L. & Boyd, R.W. (1991). Stochastic dynamics of stimulated Brillouin scattering in an optical fiber. Phys. Rev. A. 44, 32053209.
Gao, W., , Z., He, W., Zhu, C. & Dong, Y. (2007). Research on selective optical amplification of Brillouin spectrum of weak scattering signals in water. Acta Phys. sin. 56, 2693.
Garrett, C.G.B. & Mccumber, D.E. (1970). Propagation of a Gaussian light pulse through an anomalous dispersion medium. Phys. Rev. A. 1, 305313.
Giesen, A., Hügel, H., Voss, A., Wittig, K., Brauch, U. & Opower, H. (1994). Scalable concept for diode-pumped high-power solid-state-lasers. Appl. Phys. B. 58, 365372.
Glick, Y. & Sternklar, S. (1995). 1010 amplification and phase conjugation with high efficiency achieved by overcoming noise limitations in Brillouin two-beam coupling. J. Opt. Soc. Am. B. 12, 10741082.
Harrison, R.G., Kovalev, V.I., Lu, W. & Yu, D. (1999). SBS self-phase conjugation of CW Nd:YAG laser radiation in an optical fibre. Opt. Commun. 163, 208211.
Hasi, W.L.J., Lu, Z.W., Li, Q. & He, W.M. (2007). Research on the enhancement of power-load of two-cell SBS system by choosing different media or mixture medium. Laser Part. Beams 25, 207210.
Hatae, T., Naito, O., Nakatsuka, M. & Yoshida, H. (2006 b). Applications of phase conjugation mirror to Thomson scattering diagnostics. Rev. Sci. Instr. 77, 10E508–1–6.
Hatae, T., Nakatsuka, M. &. Yoshida, H. (2004). Improvement of Thomson scattering diagnostics using stimulated-Brillouin-scattering-based phase conjugated mirror. J. Plasma Fusion Res. 80, 870882.
Hatae, T., Nakatsuka, M., Yoshida, H., Ebisawa, K., Kusama, Y., Sato, K., Kasunuma, A., Kubomura, H. & Shinobu, K. (2006 a). Progress in development of edge. Thomson scattering system for ITER. Trans. Fusion Sci. Techn. 51, 5861.
Hau, L.V., Harris, S.E., Dutton, Z. & Behroozi, C.H. (1999). Light speed reduction to 17 meters per second in an ultracold atomic gas. Nature 397, 594596.
Heiman, D., Hamilton, D.S. & Hellwarth, R.W. (1979). Brillouin scattering measurements in optical glasses. Phys. Rev. 19, 65836592.
Herraez, M.G., Song, K.Y. & Thevenaz, L. (2006). Arbitrary bandwidth Brillouin slow light in optical fibers. Opt. Exp. 14, 13951400.
Heuer, A. & Menzel, R. (2003). Self pumped phase conjugation by stimulated Brillouin scattering. In Phase Conjugate Laser Optics. New York: Wiley-Interscience.
Hodgson, N. & Weber, H. (1997 a). Optical Resonators. Chapter 22.1. New York: Springer.
Hodgson, N. & Weber, H. (1997 b). Optical Resonators. New York: Springer.
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.
Hon, D.T. (1980). Pulse compression by stimulated Brillouin scattering. Opt. Lett. 5, 516518.
Honea, E.C., Beach, R.J., Mitchell, S.C., Skidmore, J.A., Emanuel, M.A., Sutton, S.B., Payne, S.A., Avizonis, P.V., Monroe, R.S. & Harris, D.G. (2000). High-power dual-rod Yb:YAG laser. Opt. Lett. 25, 805807.
Jackel, S., Moshe, I. & Lavi, R. (2003). Comparison of adaptive optics and phase-conjugate mirrors for correction of aberrations in double-pass amplifiers. Appl. Opt. 42, 983989.
Jeong, Y., Sahu, J.K. & Payne, D.N. (2004). Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Opt. Exp. 12, 60886092.
Jianren, L., Prabhu, M., Jianqiu, X., Ueda, K., Yagi, H., Yanagitani, T. & Kaminski, A.A. (2000). High efficient 2% Nd:yttrium aluminum garnet ceramic laser. Appl. Phys. Lett. 78, 37073709.
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182.
Kalal, M., Kong, H.J. & Alexander, N.B. (2007 a). Consideration of SBS PCM technique for self-aiming of laser fusion drivers on IFE targets-proposal and feasibility study. Third International Conference on the Frontiers of Plasma Physics and Technology, Bangkok, Thailand.
Kalal, M., Kong, H.J. & Alexander, N.B., Martinkova, M. & Slezak, O. (2007 b). SBS PCM technique and its possible role in achieving IFE objectives IAEA. Technical Meeting on Physics and Technology of IFE Targets and Chambers. Kobe, Japan.
Kappe, P., Strasser, A. & Ostermeyer, M. (2007). Investigation of the impact of SBS-parameters and loss modulation on the mode locking of an SBS-laser oscillator. Laser Part. Beams 25, 107116.
Kiriyama, H., Yamakawa, K., Nagai, T., Kageyama, N., Miyajima, H., Kan, H., Yoshida, H. & Nakatsuka, M. (2003). 360 W average power operation with a single-stage diode-pumped Nd:YAG amplifier at a 1 kilohertz-repetition-rate. Opt. Lett. 28, 16711673.
Kleinbauer, J.,  Knappe, R. & Wallenstein, R. (2004). 13-W picosecond Nd:GdVO4 regenerative amplifier with 200-kHz. Appl. Phys. B. 81, 163166.
Kmetik, V., Fiedorowics, H., Andreev, A.A., Witte, K.J., Daido, H., Fujita, H., Nakatsuka, M. & Yamanaka, T. (1998). Reliable stimulated Brillouin scattering compression of Nd:YAG laser pulses with liquid fluorocarbon for long-time operation at 10 Hz. Appl. Opt. 37, 70857090.
Knight, J.C., Arriaga, J., Birks, T.A., Ortigosa-Blanch, A., Wadsworth, W.J. & St Russel, P.. (2000). Anomalous dispersion in photonic crystal fibre. IEEE Photo. Techn. Lett. 12, 807809.
Kobyakov, A., Darmanyan, S.A. & Chowdhury, D.Q. (2006). Exact analytical treatment of noise initiation of SBS in the presence of loss. Opt. Commun 260, 4649.
Koechner, W. (1999 a). Nd: Lasers. Solid-State Laser Engineering. New York: Springer.
Koechner, W. (1999 b). Cylindrical geometry. Solid-State Laser Engineering. New York: Springer.
Koechner, W. (2006). Harmonic generation. Solid-State Laser Engineering. Berlin: Springer-Verlag.
Kong, H.J., Lee, S.K. & Lee, D.W. (2005 a). Beam combined laser fusion driver with high power and high repetition rate using stimulated Brillouin scattering phase conjugation mirrors and self-phase-locking. Laser Part. Beams 23, 5559.
Kong, H.J., Lee, S.K. & Lee, D.W. (2005 b). Highly repetitive high energy/power beam combination laser: IFE laser driver using independent phase control of stimulated Brillouin scattering phase conjugate mirrors and pre-pulse technique. Laser Part. Beams 23, 107111.
Kong, H.J., Beak, D.H., Lee, S.K. & Lee, D.W. (2005 c). Waveform preservation of the backscattered stimulated Brillouin scattering wave by using a prepulse injection. Opt. Lett. 30, 34013403.
Kong, H.J., Lee, J.Y., Shin, Y.S., Byun, J.O., Park, H.S. & Kim, H. (1997). Beam recombination characteristics in array laser amplification using stimulated Brillouin scattering phase conjugation. Opt. Rev. 4, 277283.
Kong, H.J., Lee, S.K., Lee, D.W. & Guo, H. (2005 d). Phase control of a stimulated Brillouin scattering phase conjugate mirror by a self-generated density modulation. Appl. Phys. Lett. 86, 051111.
Kong, H.J., Yoon, J.W., Beak, D.H., Shin, J.S., Lee, S.K. & Lee, D.W. (2007). Laser fusion driver using stimulated Brillouin scattering phase conjugate mirrors by a self-density modulation. Laser Part. Beams 25, 225238.
Kong, H.J., Yoon, J.W., Shin, J.S. & Beak, D.H. (2008). Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors. Appl. Phys. Lett. 92, 021102.
Kong, H.J., Yoon, J.W., Shin, J.S., Beak, D.H. & Lee, B.J. (2006). Long term stabilization of the beam combination laser with a phase controlled stimulated Brillouin scattering phase conjugation mirrors for the laser fusion driver. Laser Part. Beams 24, 519523.
Kovalev, V.I. & Harrison, R.G. (2000). Observation of inhomogeneous spectral broadening of stimulated Brillouin scattering in an optical fiber. Phys. Rev. Lett. 85, 18791882.
Kovalev, V.I. & Harrison, R.G. (2002). Waveguide-induced inhomogeneous spectral broadening of stimulated Brillouin scattering in optical fiber. Opt. Lett. 27, 20222024.
Kovalev, V.I. & Harrison, R.G. (2004). Spectral broadening of continuous-wave monochromatic pump radiation caused by stimulated Brillouin scattering in optical fiber. Opt. Lett. 29, 379381.
Kovalev, V.I. & Harrison, R.G. (2005). Temporally stable continuous-wave phase conjugation by stimulated Brillouin scattering in optical fiber with cavity feedback. Opt. Lett. 30, 13751377.
Kovalev, V.I. (2002). Stimulated Brillouin scattering in the midinfrared region of the spectrum. J. Russian Laser Res. 23, 1330.
Kracht, D., Freiburg, D., Wilhelm, R., Frede, M. & Fallnich, C. (2006). Core-doped Ceramic Nd:YAG Laser. Opt. Exp. 14, 2690–2594.
Kuzin, E.A., Petrov, M.P. & Fotiadi, A.A. (1994). Phase conjugation by SMBS in optical fibers. In Optical Phase Conjugation (Gower, M. and Proch, D., eds.). New York: Springer-Verlag.
Landau, L.D. & Lifshitz, E.M. (1960). Electrodynamics of Continuous Madia. Reading, MA: Addison-Wesley.
Larionov, M., Butze, F., Nickel, D. & Giesen, A. (2007). High-repetition-rate regenerative thin-disk amplifier with 116 µJ pulse energy and 250 fs pulse duration. Opt. Lett. 32, 494496.
Le Floch, S. & Cambon, P. (2003 a). Study of Brillouin gain spectrum in standard single-mode fiber at low temperatures (1.4–370 K) and high hydrostatic pressures (1–250 bars). Opt. Commun. 219, 395.
Le Floch, S. & Cambon, P. (2003 b). Theoretical evaluation of the Brillouin threshold and the steady-state Brillouin equations in standard single-mode optical fibers. J. Opt. Soc. Am. A. 20, 11321137.
Lee, S.K., Kong, H.J. & Nakatsuka, M. (2005). Great improvement of phase controlling of the entirely independent stimulated Brillouin scattering phase conjugate mirrors by balancing the pump energies. Appl. Phys. Lett. 87, 161109.
Li, D., Ma, Z., Haas, R., Schell, A., Simon, J., Diart, R., Shi, P., Hu, P., Lossen, P. & Du, K. (2007). Diode-pumped efficient slab laser with two Nd:YLF crystals and second-harmonic generation by slab LBO. Opt. Lett. 31, 158165.
Liem, A., Limpert, J., Zellmer, H. & Tünnermann, A. (2003). 100-W single-frequency master-oscillator fiber power amplifier. Opt. Lett. 28, 15371539.
Limpert, J., Schreiber, T., Nolte, S., Zellmer, H., Tünnermann, A., Iliew, R., Lederer, F., Broeng, J., Vienne, G., Petersson, A. & Jakobsen, C. (2003). High-power air-clad large-mode-area photonic crystal fiber laser. Opt. Exp. 11, 818823.
Lombard, L., Brignon, A., Huignard, J.P., Lallier, E., Lucas-Leclin, G., Georges, P., Pauliat, G. & Roosen, G. (2004). Diffraction-limited polarized emission from a multimode ytterbium fiber amplifier after a nonlinear beam converter. Opt. Lett. 29, 989991.
Loree, T.R., Watkins, D.E., Johnson, T.M., Kurnit, N.A. & Fisher, R.A. (1987). Phase locking two beams by means of seeded Brillouin scattering. Opt. Lett. 12, 178180.
Lu, J., Parabhu, M., Song, J., Li, C., Xu, J., Ueda, K., Kaminskii, A.A., Yagi, H. & Yanagitani, T. (2000). Optical properties and highly efficient laser oscillation of Nd:YAG ceramics. Appl. Phys. B. 71, 469472.
Lu, J., Prabhu, M., Ueda, K., Yagi, H., Yanagitani, T., Kudryashov, A. & Kaminski, A.A. (2001). Potential of Ceramic YAG Lasers. Laser Phys. 78, 10531057.
Lu, Z., Dong, Y. & Li, Q. (2007). Slow light in multi-line Brillouin gain spectrum. Opt. Exp. 15, 18711877.
Lucianetti, A., Weber, R., Hodel, W., Weber, H.P., Papashvili, A., Konyushkin, V.A. & Basiev, T.T. (1999). Beam-quality improvement of a passively Q-switched Nd:YAG laser with a core-doped rod. Appl. Opt. 38, 17771783.
Maier, M., Rother, W. & Kaiser, W. (1967). Time-resolved measurements of stimulated Brillouin scattering. Appl. Phys. Lett. 10, 8082.
Mao, J.S., Zhao, J.Y., Li, Y.D., Xie, A.G., Fang, Z.S., Sannikov, V. & Gorshkov, A. (2001). HT-7 multipoint Nd laser Thomson scattering apparatus. Plasma Sci. Techn. 3, 691702.
Mao, X.P., Tkach, R.W., Chraplyvy, A.R., Jopson, R.M. & Derosier, R.M. (1992). Stimulated Brillouin threshold dependence on fiber type and uniformity. IEEE Photon. Tech. Lett. 4, 6669.
Margerie, J., Moncorge, R. & Nagtegaele, P. (2006). Spectroscopic investigation of the refractive index variations in the Nd:YAG laser crystal. Phys. Rev. B 74, 235108235118.
Meister, S., Riesbeck, T. & Eichler, H.J. (2007). Glass fibers for stimulated Brillouin scattering and phase conjugation. Laser Part. Beams 25, 1521.
Meister, S., Theiss, C., Scharfenorth, C. & Eichler, H.J. (2006). Power transmission limits of different glass fibers with antireflective coating: Reliability of optical fiber components, devices, systems, and networks III. Proc. SPIE 6193, 215225.
Mitra, A., Yoshida, H., Fujita, F. & Nakatsuka, M. (2006). Sub nanosecondt pulse generation by stimulated Brillouin scattering using FC-75 in an integrated set-up with laser energy up to 1.5 J. Jpn. J. Appl. Phys. 45, 16071611.
Moon, J.A. & Schaafsma, D.T. (2000). Chalcogenide fibers: An overview of selected applications. Fiber Int. Opt. 19, 201212.
Moyer, R.H., Valley, M. & Cimolino, M.C. (1988). Beam combination through stimulated Brillouin scattering. J. Opt. Soc. Am. B. 5, 24732489.
Nawata, K., Ojima, Y., Okida, M., Ogawa, T. & Omatsu, T. (2007 a). Power scaling of a pico-second Nd:YVO4 master-oscillator power amplifier with a phase-conjugate mirror. Opt. Exp. 14, 1065710662.
Nawata, K., Okida, M., Furuki, K. & Omatsu, T. (2007 b). MW ps pulse generation at sub-MHz repetition rates from a phase conjugate Nd:YVO4 bounce amplifier. Opt. Exp. 15, 91239128.
Neshev, I.D., Velchev, W.A., Majewski, W., Hogervorst, W. & Ubachs, W. (1999). SBS pulse compression to 200 ps in a compact single-cell setup. Appl. Phys. B. 68, 671675.
Neumayer, P., Bock, R., Borneis, S., Brambrink, E., Brand, H., Caird, J., Campbell, E.M., Gaul, E., Goette, S., Haefner, C., Hahn, T., Heuck, H.M., Hoffmann, D.H.H., Javorkova, D., Kluge, H.J., Kuehl, T., Kunzer, S., Merz, T., Onkels, E., Perry, D.M., Reemts, D., Roth, M., Samek, S., Schaumann, G., Schrader, F., Seelig, W., Tauschwitz, A., Thiel, R., Ursescu, D., Wiewior, P., Wittrock, U. & Zielbauer, B. (2005). Status of PHELIX laser and first experiments. Laser and Part. Beams 23, 385389.
Nobile, A., Nikroo, A., Cook, R.C., Cooley, J.C., Alexander, D.J., Hackenberg, R.E., Necker, C.T., Dickerson, R.M., Kilkenny, J.L., Bernat, T.P., Chen, K.C., Xu, H., Stephens, R.B., Huang, H., Haan, S.W., Forsman, A.C., Atherton, L.J., Letts, S.A., Bono, M.J. & Wilson, D.C. (2006). Status of the development of ignition capsules in the US effort to achieve thermonuclear ignition on the national ignition facility. Laser Part. Beams 24, 567578.
Nosach, O.Y., Popovichev, V.I., Ragul'skii, V.V. & Faizullov, F.S. (1972). Cancellation of phase distortions in an amplifying medium with a “brillouin mirror.” Sov. Phys. JETP Lett. 16, 435438.
Ojima, Y., Nawata, K. & Omatsu, T. (2006). Over 10-watt pico-second diffraction-limited output from a Nd:YVO4 slab amplifier with a phase conjugate mirror. Opt. Exp. 13, 89938998.
Okawachi, Y., Bigelow, M.S., Sharping, J.E., Zu, Z., Schweinsberg, A., Gauthier, D.J., Boyd, R.W. & Gaeta, A.L. (2005). Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys. Rev. Lett. 94, 153902.
Omatsu, T., Katoh, A., Okada, K., Hatano, S., Hasegawa, A., Tateda, M. & Ogura, I. (1998). Investigation of photorefractive phase conjugate feedback on the lasing spectrum of a broad-stripe laser diode. Opt. Commun. 146, 167172.
Oraevsky, A.N. (1988). Quantum fluctuations and formation of coherency in laser. J. Opt. Soc. of Am B. 5, 933945.
Ostermeyer, M. & Brandenburg, I. (2005). Simulation of the extraction of near diffraction limited Gaussian beams from side pumped core doped ceramic Nd:YAG and conventional laser rods. Opt. Exp. 13, 1014510156.
Ostermeyer, M. & Menzel, R. (1999). 50 Watt average output power with 1.2DL beam quality from a single rod Nd:YALO laser with phase-conjugating SBS mirror. Opt. Commun. 171, 8591.
Ostermeyer, M., Heuer, A. & Menzel, R. (1998). 27-W average output power with 1.2*DL beam quality from a single rod Nd:YAG laser with phase conjugating SBS mirror. J. Quantm Electron 34, 372377.
Ostermeyer, M., Kappe, P., Menzel, R. & Wulfmeyer, V. (2005). Diode pumped Nd:YAG MOPA with high pulse energy, excellent beam quality and frequency stabilized master oscillator as a basis for a next generation lidar system. Appl. Opt. 44, 582590.
Park, H., Lim, C., Yoshida, H. & Nakatsuka, M. (2006). Measurement of stimulated Brillouin scattering characteristics in the heavy fluorocarbon (FC) liquids and the perfluoropolyether(HT) liquids. Jpn. J. Appl. Phys. 45, 50735075.
Pepper, D.M. & Yariv, A. (1980). Compensation for phase distortions in nonlinear media by phase conjugation. Opt. Lett. 5, 5960.
Pilipetsky, N.F., Shkunov, V.V. & Zel'dovich, B.Ya. (1985). Principles of Phase Conjugation. Berlin: Springer.
Powell, R.C. (1998). Physics of Solid-State Laser Materials. New York, Berlin, Heidelberg: Springer.
Report of the First Research Coordination Meeting, IAEA HQ. (2006). Pathways to Energy from Inertial Fusion: An integrated approach. Vienna, Austria.
Ridley, K.D. & Scott, A.M. (1996). Phase-locked phase conjugation using a Brillouin loop scheme to eliminate phase fluctuations. J. Opt. Soc. Am. B. 13, 900907.
Riesbeck, T. & Eichler, H.J. (2007). A high power laser system at 540 nm with beam coupling by second harmonic generation. Opt. Comm. 275, 429432.
Riesbeck, T., Risse, E. & Eichler, H.J. (2001). Pulsed solid-state laser system with fiber phase conjugation and 315W average output power. Appl. Phys. B. 73, 847849.
Rockwell, D.A. & Giuliano, C.R. (1986). Coherent coupling of laser gain media using phase conjugation. Opt. Lett. 11, 147149.
Rockwell, D.A. (1988). A review of phase-conjugate solid-state lasers. IEEE J. Quantum Electron 24, 11241140.
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser and Part. Beams 23, 503512.
Schiemann, S., Ubachs, W. & Hogervorst, W. (1997). Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup. IEEE J. Quantum Electron 33, 358366.
Scott, A.M. & Watkins, A.M. (1990). Gain and noise characteristics of a Brillouin amplifier and their dependence on the spatial structure of the pump beam. J. Opt. Soc. Am. B. 7, 929935.
Sharping, J.E., Okawachi, Y. & Gaeta, A.L. (2005). Wide bandwidth slow light using a Raman fiber amplifier. Opt. Exp. 13, 60926098.
Shen, Y.R. (1984). The Principles of Nonlinear Optics. New York: John Wiley & Sons.
Shibata, N., Okamoto, K. & Azuma, Y. (1989). Longitudinal acoustic modes and Brillouin-gain spectra for GeO2-doped-core single-mode fibers. J. Opt. Soc. Am. B. 6, 11671174.
Shibata, N., Waarts, R.G. & Braun, R.P. (1987). Brillouin gain spectra for single-mode fibers having pure-silica GeO2-doped, and P2O5-doped cores. Opt. Lett. 12, 269271.
Shiraki, K., Ohashi, M. & Tateda, M. (1995). Suppression of stimulated Brillouin scattering in a fiber by changing the core radius. Electron. Lett. 31, 668669.
Siegman, A.E. (1986). Laser. Mill Valley: University Science Books.
Smith, R.G. (1972). Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering. Appl. Opt. 11, 24892494.
Song, K.Y. & Hotate, K. (2007). 25 GHz bandwidth Brillouin slow light in optical fibers. Opt. Lett. 32, 217219.
Song, K.Y., Herraez, M.G. & Thevenaz, L. (2005). Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Opt. Exp. 13, 8288.
Sternklar, S., Jackel, S., Chomsky, D. & Zigler, A. (1990). Coherent beam and image amplification by Brillouin two-beam coupling in CS2. Opt. Lett. 15, 616618.
Sternklar, S., Weiss, S., Segev, M. & Fischer, B. (1986). Beam coupling and locking of lasers using photorefractive four-wave mixing. Opt. Lett. 11, 528530.
Stewen, C., Contag, K., Larionov, M., Giesen, A. & Hugel, H. (2000). A 1-kW CW thin disc laser. IEEE J. Sel. Topics Quan. Electron 6, 650657.
Sträßer, A. & OSTERMEYER, M. (2006). Improving the brightness of side pumped power amplifieres by using core doped ceramic rods. Opt. Exp. 14, 66876693.
Sträßer, A., Waltinger, T. & Ostermeyer, M. (2007). Injection seeded frequency stabilized Nd:YAG ring oscillator following a Pound-Drever-Hall scheme. Appl. Opt. 46, 83588363.
Sumida, D.S., Betin, A.A. & Bruesselbach, H. (1999). Diode-pumped Yb:YAG catches up with Nd:YAG. Laser Focus World 35, 6366.
Sumida, D.S., Jones, D.C. & Rockwell, D.A. (1994). An 8.2J phase-conjugate solid-state laser coherently combining eight parallel amplifiers. IEEE J. Quan Electron 30, 26172626.
Tang, C.L. (1966). Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process. J. Appl. Phys. 37, 29452955.
Tkach, R.W., Chraplyvy, A.R. & Derosier, R.M. (1986). Spontaneous Brillouin scattering for single-mode optical-fibre characterisation. Electron. Lett. 22, 10111013.
Tsubakimoto, K., Yoshida, H., Fujita, H. & Nakatsuka, M. (2006). Development of high-peak and high-average-power LD pumped solid-state laser system for EUV generation. Rev. Laser Eng. 34, 628632.
Tsun, T.O., Wada, A., Sakai, T. & Yamauchi, R. (1992). Novel method using white spectral probe signals to measure Brillouin gain spectra of pure silica core fibres. Electron. Lett. 28, 247249.
Tucker, A.W., Birnbaum, M., Fincher, C.L. & Erler, J.W. (1977). Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4. J. Appl. Phys. 48, 49074911.
Vahala, K., Kyuma, K. & Yariv, A. (1986). Narrow line width, single frequency semiconductor laser with a phase conjugate external cavity mirror. Appl. Phys. Lett. 49, 15631565.
Wang, S., Lin, D., , Z., Zhao, X., Wang, C. & Wang, X. (2003). Numerical simulation and scheme design for laser beam combination of stimulated Brillouin scattering. High Power Laser Part. Beams 15, 877.
Wang, S., , Z., Lin, D., Ding, L. & Jiang, D. (2007). Investigation of serial coherent laser beam combination Based on Brillouin amplification. Laser Part. Beams 25, 7983.
Wang, Y.L., Lu, Z.W., He, W.M. & Zhang, Y. (2007). Investigation on a high energy stimulated Brillouin scattering phase conjugating mirror. Acta Phys. Sin. 56, 883888.
Wilhelm, R. (2001). Numerical modeling of solid state lasers. talk at laser working group session.–00.pdf
Yamanaka, C. (2000). Super high-power laser systems and their application. Opt. Quan. Electron 32, 263297.
Yamanaka, C., Kato, Y., Izawa, Y., Yoshida, K., Yamanaka, T., Sasaki, T., Nakatsuka, M., Mochizuki, T., Kuroda, J. & Nakai, S. (1981). Nd-doped phosphate glass laser systems for laser-fusion research. IEEE J. Quantum Electron 17, 16391649.
Yariv, A. (1979). Quantum Electronics. New York: J. Wiley & Sons.
Yeh, P. (1993). Introduction to Photorefractive Nonlinear Optics. New York: J. Wiley & Sons.
Yeniay, A., Delavaux, J.-M. & Toulouse, J. (2002). Spontaneous and stimulated rillouin scattering gain spectra in optical fibers. J. Light. Tech. 20, 14251432.
Yoshida, H., Fujita, H., Nakatsuka, M. & Fujinoki, A. (2004 a). Temporal compression by stimulated-Brillouin-scattering of Q-switched pulse with fused quartz glass. Jpn. J. Appl. Phys. 43, 11031105.
Yoshida, H., Fujita, H., Nakatsuka, M. & Yoshida, K. (1997 a). Stimulated Brillouin scattering phase-conjugated wave reflection from fused-silica glass without laser induced damage. Opt. Eng. 36, 25572562.
Yoshida, H., Fujita, H., Nakatsuka, M. & Yoshida, K. (1999 a). High resistant phase-conjugated stimulated Brillouin scattering mirror using fused-silica glass for Nd:YAG laser system. Jpn. J. Appl. Phys. 38, L521L523.
Yoshida, H., Fujita, H., Nakatsuka, M. & Yoshida, K. (1999 b). Generation of SBS phase-conjugated wave using optical glasses. Rev. Laser Eng. 27, 495500.
Yoshida, H., Fujita, H., Nakatsuka, M. & Yoshida, K. (2000). High-power phase-conjugating mirror based on stimulated Brillouin scattering in solids. Proc. SPIE 3889, 812817.
Yoshida, H., Fujita, H., Nakatsuka, M., Fujinoki, A. & Yoshida, K. (2003 a). Fused-quartz glass with low optical quality as a high damage-resistant stimulated Brillouin-scattering phase-conjugation mirror. Opt. Commun. 222, 257267.
Yoshida, H., Fujita, H., Nakatsuka, M., Ueda, T. & Fujinoki, A. (2007). Temporal compression by stimulated Brillouin scattering of Q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength. Laser Part. Beams 25, 481488.
Yoshida, H., Kmetik, V., Fujita, H., Nakatsuka, M., Yamanaka, T. & Yoshida, K. (1997 b). Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror. Appl. Opt. 36, 37393744.
Yoshida, H., Nakatsuka, M., Hatae, T., Kitamura, S. & Kashiwabara, T. (2002). YAG laser performance improved by stimulated Brillouin scattering phase conjugation mirror in Thomson scattering diagnostics at JT-60. Jpn. J. Appl. Phys. 42, 439442.
Yoshida, H., Nakatsuka, M., Hatae, T., Kitamura, S. & Kashiwabara, T. (2003 b). YAG laser performance improved by stimulated Brillouin scattering phase conjugation mirror in Thomson Scattering Diagnostics at JT-60. Jpn. J. Appl. Phys. 42, 439442.
Yoshida, H., Nakatsuka, M., Hatae, T., Kitamura, S., Sakuma, T. & Hamano, T. (2004 b). Two-beam-combined 7.4 J, 50 Hz Q-switch pulsed YAG laser system based on SBS phase conjugation mirror for plasma diagnostics. Jpn. J. Appl. Phys. 43, L10381040.
Yoshizawa, N. & Imai, T. (1993). Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling. J. Lightwave Techn. 11, 15181522.
Yoshizawa, N., Horiguchi, T. & Kurashima, T. (1991). Proposal for stimulated Brillouin scattering suppression by fibre cabling. Electron. Lett. 27, 11001101.
Zel'dovich, B. YA., Pilipetsky, N.F. & Shkunov, V.V. (1985). Principles of Phase Conjugation. Berlin: Springer-Verlag.
Zel'dovich, B.Y., Popovichev, V.I., Ragulskii, V.V. & Failzullov, F.S. (1972). Connection between the wave fronts of the reflected and exciting light in stimulated Mandel'shtam-Brillouin scattering. Sov. Phys. JETP Lett. 15, 109112.
Zu, Z., Dawes, A.M.C., Gauthier, D.J., Zang, L. & Willner, A.E. (2007). Broadband SBS slow light in an optical fiber. J. Lightwave Techn. 25, 201206.
Zubarev, I.G., Mironov, A.B. & Mikhailov, S.I. (1980). Single-mode pulse-periodic oscillator-amplifier system with wavefront reversal. Sov. J. Quantum Electron 10, 11791181.
Zvorykin, V.D., Didenko, N.V., Ionin, A.A., Kholin, I.V., Konyashchenko, A.V., Krokhin, O.N., Levchenko, A.O., Mavritskii, A.O., Mesyats, G.A., Molchanov, A.G., Rogulev, M.A., Seleznev, L.V., Sinitsyn, D.V., Tenyakov, S.Y., Ustinovskii, N.N. & Zayarnyi, D.A. (2007). GARPUN-MTW: A hybrid Ti:Sapphire/KrF laser facility for simultaneous amplification of subpicosecond/nanosecond pulses relevant to fast-ignition ICF concept. Laser Part. Beams 25, 435451.


Trends in stimulated Brillouin scattering and optical phase conjugation

  • M. Ostermeyer (a1), H.J. Kong (a2), V.I. Kovalev (a3) (a4), R.G. Harrison (a3), A.A. Fotiadi (a5) (a6), P. Mégret (a5), M. Kalal (a7), O. Slezak (a7), J.W. Yoon (a2), J.S. Shin (a2), D.H. Beak (a2), S.K. Lee (a8), Z. Lü (a9), S. Wang (a9), D. Lin (a9), J.C. Knight (a10), N.E. Kotova (a4), A. Sträßer (a1), A. Scheikh-Obeid (a1), T. Riesbeck (a11), S. Meister (a11), H.J. Eichler (a11), Y. Wang (a9), W. He (a9), H. Yoshida (a12), H. Fujita (a12), M. Nakatsuka (a12), T. Hatae (a13), H. Park (a14), C. Lim (a14), T. Omatsu (a15) (a16), K. Nawata (a15), N. Shiba (a15), O.L. Antipov (a17), M.S. Kuznetsov (a17) and N.G. Zakharov (a17)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed