Skip to main content Accessibility help
×
Home

Thermodynamic properties of thermonuclear fuel in inertial confinement fusion

  • V. Brandon (a1), B. Canaud (a1), M. Temporal (a2) and R. Ramis (a3)

Abstract

Hot-spot path in the thermodynamic space $({\rm \rho} R,T_{\rm i} )_{{\rm hs}} $ is investigated for direct-drive scaled-target family covering a huge interval of kinetic energy on both sides of kinetic threshold for ignition. Different peak implosion velocities and two initial aspect ratios have been considered. It is shown that hot spot follows almost the same path during deceleration up to stagnation whatever the target is. As attended, after stagnation, a clear distinction is done between non-, marginally-, or fully igniting targets. For the last, ionic temperature can reach very high values when the thermonuclear energy becomes very high.

Copyright

Corresponding author

Address correspondence and reprint requests to: B. Canaud, CEA, DIF, F-91297 Arpajon, France. E-mail: benoit.canaud@cea.fr

References

Hide All
Amendt, P., Landen, O.L., Robey, H.F., Li, C.K. & Petrasso, R.D. (2010). Plasma barodiffusion in inertial-confinement-fusion implosions: application to observed yield anomalies in thermonuclear fuel mixtures. Phys. Rev. Lett. 105, 115005.
Amendt, P., Wilks, S.C., Bellei, C., Li, C.K. & Petrasso, R.D. (2011). The potential role of electric fields and plasma barodiffusion on the inertial confinement fusion database. Phys. Plasmas 18, 056308.
Atzeni, S. & Meyer-ter-Vehn, J. (2004). The physics of inertial fusion. Oxford: Clarendon Press-Oxford.
Basko, M. (1995). On the scaling of the energy gain of ICF targets. Nucl. Fusion 35, 87.
Basko, M. & Johner, J. (1998). Ignition energy scaling of inertial confinement fusion targets. Nucl. Fusion 38, 1779.
Bel'kov, S.A., Bondarenko, S.V., Vergunova, G.A., Garanin, S.G., Gus'kov, S.Y., Demchenko, N.N., Doskoch, I.Y., Kuchugov, P.A., Zmitrenko, N.V., Rozanov, V.B., Stepanov, R.V. & Yakhin, R.A. (2015). Thermonuclear targets for direct-drive ignition by a Megajoule laser pulse. J. Exp. Theor. Phys. 121, 686698.
Bellei, C., Amendt, P.A., Wilks, S.C., Haines, M.G., Casey, D.T., Li, C.K., Petrasso, R. & Welch, D.R. (2013). Species separation in inertial confinement fusion fuels. Phys. Plasmas 20, 012701.
Betti, R., Anderson, K., Goncharov, V.N., McCrory, R.L., Meyerhofer, D.D., Skupsky, S. & Town, R. (2002). Deceleration phase of inertial confinement fusion implosions. Phys. Plasmas 9, 2277.
Brandon, V., Canaud, B., Laffite, S., Temporal, M. & Ramis, R. (2013a). Marginally igniting direct-drive target designs for the laser Megajoule. Laser Part. Beams 31, 141.
Brandon, V., Canaud, B., Laffite, S., Temporal, M. & Ramis, R. (2013b). Systematic analysis of direct-drive baseline designs for shock ignition with the laser Megajoule. EPJ: Web Conf. 59, 03004.
Brandon, V., Canaud, B., Temporal, M. & Ramis, R. (2014). Low initial aspect-ratio direct-drive target designs for shock- or self-ignition in the context of the laser Megajoule. Nucl. Fusion 54, 083016.
Caillabet, L., Canaud, B., Salin, G., Mazevet, S. & Loubeyre, P. (2011a). Change in inertial confinement fusion implosions upon using an ab initio multiphase DT equation of state. Phys. Rev. Lett. 107, 115004.
Caillabet, L., Mazevet, S. & Loubeyre, P. (2011b). Multi-phases equation of state of hydrogen from ab-initio calculations in the range 0.2 to 5 g/CC up to 10 eV. Phys. Rev. B 83, 094101.
Canaud, B., Fortin, X., Garaude, F., Meyer, C., Philippe, F., Temporal, M., Atzeni, S. & Schiavi, A. (2004). High gain direct-drive target design for the laser Megajoule. Nucl. Fusion 44, 1118.
Canaud, B. & Garaude, F. (2005). Optimization of laser-target coupling efficiency for direct drive laser fusion. Nucl. Fusion 45, L43.
Canaud, B., Garaude, F., Clique, C., Lecler, N., Masson, A., Quach, R. & Van der Vliet, J. (2007). High-gain direct-drive laser fusion with indirect drive beam layout of laser Mégajoule. Nucl. Fusion 47, 1652.
Canaud, B. & Temporal, M. (2010). High-gain shock ignition of direct-drive ICF targets for the laser Mégajoule. New J. Phys. 12, 043037.
Canaud, B., Temporal, M. & Laffite, S. (2012). 2D analysis of direct-drive shock-ignited HiPER-like target implosions with the full laser megajoule for the laser Megajoule. Laser Part. Beams 30, 183.
Cheng, B., Kwan, T.J.T., Wang, Y.-M. & Batha, S.H. (2013). Scaling laws for ignition at the National Ignition facility from first principles. Phys. Rev. E 88, 041101.
Demchenko, N.N., Doskoch, I.Y.A., Gus'kov, S.Y., Kuchugov, P.A., Rozanov, V.B., Stepanov, R.V., Vergunova, G.A., Yakhin, R.A. & Zmitrenko, N.V. (2015). Irradiation asymmetry effects on the direct drive targets compression for the megajoule laser facility. Laser Part. Beams 33, 655.
Falize, E., Bouquet, S. & Michaut, C. (2009). Scaling laws for radiating fluids: the pillar of laboratory astrophysics. Astrophys. Space Sci. 322, 107.
Falize, E., Michaut, C. & Bouquet, S. (2011). Similarity properties and scaling laws of radiation hydrodynamic flows in laboratory astrophysics. Astrophys. J. 730, 96.
Glebov, V.Y., Forrest, C., Knauer, J.P., Pruyne, A., Romanofsky, M., Sangster, T.C., Shoup, M.J. III, Stoeckl, C., Caggiano, J.A., Carman, M.L., Clancy, T.J., Hatarik, R., McNaney, J. & Zaitseva, N.P. (2012). Testing a new NIF neutron time-of-flight detector with a bibenzyl scintillator on OMEGA. Rev. Sci. Instrum. 83, 10D309.
Glebov, V.Yu, Sangster, T.C., Stoeckl, C., Knauer, J.P., Theobald, W., Marshall, K.L., Shoup, M.J. III, Buczek, T., Cruz, M., Duffy, T., Romanofsky, M., Fox, M., Pruyne, A., Moran, M.J., Lerche, R.A., McNaney, J., Kilkenny, J.D., Eckart, M.J., Schneider, D., Munro, D., Stoeffl, W., Zacharias, R., Haslam, J.J., Clancy, T., Yeoman, M., Warwas, D., Horsfield, C.J., Bourgade, J.-L., Landoas, O., Disdier, L., Chandler, G.A. & Leeper, R.J. (2010). The National Ignition Facility neutron time-of-flight system and its initial performance. Rev. Sci. Instrum. 81, 10D325.
Glebov, V.Yu, Stoeckl, C., Sangster, T.C., Roberts, S., Schmid, G.J., Lerche, R.A. & Moran, M.J. (2004). Prototypes of National Ignition Facility neutron time-of-flight detectors tested on OMEGA. Rev. Sci. Instrum. 75, 3559.
Herrmann, M., Tabak, M. & Lindl, J. (2001a). A generalized scaling law for the ignition energy of inertial confinement fusion capsules. Nucl. Fusion 41, 99.
Herrmann, M., Tabak, M. & Lindl, J. (2001b). Ignition scaling laws and their application to capsule design. Phys. Plasmas 8, 2296.
Hurricane, O.A., Callahan, D.A., Casey, D.T., Celliers, P.M., Cerjan, C., Dewald, E.L., Dittrich, T.R., Doppner, T., Hinkel, D.E., Berzak-Hopkins, L.F., Kline, J.L., Pape, S.L., Ma, T., MacPhee, A.G., Milovich, J.L., Pak, A., Park, H.S., Patel, P.K., Remington, B.A., Salmonson, J.D., Springer, P.T. & Tommasini, R. (2014). Fuel gain exceeding unity in an inertially confined fusion implosion. Nature 506, 343348.
Inglebert, A., Canaud, B. & Larroche, O. (2014). Species separation and neutron yield modification in inertial-confinement fusion. Eur. Phys. Lett. 107, 65003.
Kemp, A., Meyer-ter-Vehn, J. & Atzeni, S. (2001). Stagnation pressure of imploding shells and ignition energy scaling of inertial confinement fusion targets. Phys. Rev. Lett. 86, 3336.
Levedhal, W. & Lindl, J. (1997). Energy scaling of inertial confinement fusion targets for ignition and high gain. Nucl. Fusion 37, 165.
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933.
Lobatchev, V. & Betti, R. (2000). Ablative stabilization of the deceleration phase rayleigh-taylor instability. Phys. Rev. Lett. 85, 4522.
Murakami, M. & Iida, S. (2002). Scaling laws for hydrodynamically similar implosions with heat conduction. Phys. Plasmas 9, 2745.
Piriz, A.R. (1996). Scaling Laws for the ignition of deuterium-tritium shell targets. Fusion Eng. Des. 32&33, 561.
Recoules, V., Lambert, F., Decoster, A., Canaud, B. & Clerouin, J. (2009). Ab initio determination of thermal conductivity of dense hydrogen plasmas. Phys. Rev. Lett. 102, 075002.
Rinderknecht, H.G., Rosenberg, M.J., Li, C.K., Hoffman, N.M., Kagan, G., Zylstra, A.B., Sio, H., Frenje, J.A., Gatu Johnson, M., Séguin, F.H., Petrasso, R.D., Amendt, P., Bellei, C., Wilks, S., Delettrez, J., Glebov, V.Y., Stoeckl, C., Sangster, T.C., Meyerhofer, D.D. & Nikroo, A. (2015). Ion thermal decoupling and species separation in shock-driven implosions. Phys. Rev. Lett. 114, 025001.

Keywords

Thermodynamic properties of thermonuclear fuel in inertial confinement fusion

  • V. Brandon (a1), B. Canaud (a1), M. Temporal (a2) and R. Ramis (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed