Skip to main content Accessibility help
×
Home

Tail modulation suppression in the process of high-energy stimulated Brillouin scattering pulse compression

  • Z.H. Liu (a1), Y.L. Wang (a1), H.L. Wang (a1), H. Yuan (a1), R. Liu (a1), S.S. Li (a1), Z. Bai (a1), R.Q. Fan (a2), W.M. He (a1) and Z.W. Lu (a1)...

Abstract

We report that the tail modulation of Stokes pulses in the high-energy stimulated Brillouin scattering pulse compression can be suppressed by controlling effective pulse width of the pump. It is shown through numerical simulations and validated experimentally that the effective pulse width is an appropriate parameter, which determines the generation of tail modulation. The effective pulse width broaden as the increase of energy. This mechanism leads to the amplification of Stokes tail edge and it is the cause of tail modulation.

Copyright

Corresponding author

Address correspondence and reprint requests to: Y.L. Wang, National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, P. O. Box 3031, Harbin 150080, People's Republic of China. E-mail: wyl@hit.edu.cn

References

Hide All
Bertolotti, M. (2015). High-order harmonic generation in laser plasma plumes, by Rashid Ganeev: Scope: Review. Level: Early career researcher, researcher, teacher, specialist. Contemp. Phys. 56, 8889.
Damzen, M.J. & Hutchinson, M.H.R. (1983). High-efficiency laser-pulse compression by stimulated Brillouin scattering. Opt. Lett. 8, 313315.
Dane, C.B., Neuman, W.A., Hackel, L.A., Norton, M.A. & Miller, J.L. (1992). Energy scaling of SBS pulse compression. Proc. SPIE 1626. 297307.
Davydov, M.A., Shipilov, K.F. & Shmaonov, T.A. (1986). Formation of highly compressed stimulated Brillouin scattering pulses in liquids. Sou. J. Quantum Electron. 16, 14021403.
Feng, C., Xu, X. & Diels, J.C. (2014). Generation of 300 ps laser pulse with 1.2 J energy by stimulated Brillouin scattering in water at 532 nm. Opt. Lett. 39, 33673370.
Ganeev, R.A., Suzuki, M. & Kuroda, H. (2014). Advanced properties of extended plasmas for efficient high-order harmonic generation. Phys. Plasmas 21, 053503.
Gorbunov, V.A., Papernyĭ, S.B., Petrov, V.F. & Startsev, V.R. (1983). Time compression of pulses in the course of stimulated Brillouin scattering in gases. Sou. J. Quantum Electron. 13, 900905.
Guillaume, E., Humphrey, K., Nakamura, H., Trines, R.M.G.M., Heathcote, R., Galimberti, M. & Kar, S. (2014). Demonstration of laser pulse amplification by stimulated Brillouin scattering. High Power Laser Sci. Eng. 2, e33.
Hasi, W., Zhao, H., Lin, D., He, W. & , Z. (2015). Characteristics of perfluorinated amine media for stimulated Brillouin scattering in hundreds of picoseconds pulse compression at 532 nm. Chin. Opt. Lett. 13, 061901061901.
Ishii, N., Turi, L., Yakovlev, V.S., Fuji, T., Krausz, F., Baltuška, A. & Piskarskas, A. (2005). Multimillijoule chirped parametric amplification of few-cycle pulses. Opt. Lett. 30, 567569.
Kuwahara, K., Takahashi, E., Matsumoto, Y., Kato, S. & Owadano, Y. (2000). Short-pulse generation by saturated KrF laser amplification of a steep Stokes pulse produced by two-step stimulated Brillouin scattering. JOSA B 17, 19431947.
Laroche, M., Gilles, H. & Girard, S. (2011). High-peak-power nanosecond pulse generation by stimulated Brillouin scattering pulse compression in a seeded Yb-doped fiber amplifier. Opt. Lett. 36, 241243.
Mitra, A., Yoshida, H., Fujita, H. & Nakatsuka, M. (2006). Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated with laser energy up to 1.5 J. Jpn. J. Appl. Phys. 45, 16071611.
Ottusch, J.J. & Rockwell, D.A. (1991). Stimulated Brillouin scattering phase-conjugation fidelity fluctuations. Opt. Lett. 16, 369371.
Popmintchev, T., Chen, M.C., Popmintchev, D., Arpin, P., Brown, S., Ališauskas, S. & Baltuška, A. (2012). Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers. Science 336, 12871291.
Roy, D.G. & Rao, D.V.G.L.N. (1986). Optical pulse narrowing by backward, transient stimulated Brillouin scattering. J Appl. Phys. 59, 332335.
Schiemann, S., Ubachs, W. & Hogervorst, W. (1997). Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator–amplifier setup. IEEE J. Quantum Electron. 33, 358366.
Velchev, I., Neshev, D., Hogervorst, W. & Ubachs, W. (1999). Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering. IEEE J. Quantum Electron. 35, 18121816.
Xu, X., Feng, C. & Diels, J.C. (2014). Optimizing sub-ns pulse compression for high energy application. Opt. Express 22, 1390413915.
Yoon, J.W., Shin, J.S., Kong, H.J. & Lee, J. (2009). Investigation of the relationship between the prepulse energy and the delay time in the waveform preservation of a stimulated Brillouin scattering wave by prepulse injection. JOSA B 26, 21672170.
Yoshida, H., Fujita, H., Nakatsuka, M., Ueda, T. & Fujinoki, (2007). Compact temporal-pulse-compressor used in fused-silica glass at 1064 nm wavelength. J. Appl. Phys. 46, L80L82.
Yoshida, H., Hatae, T., Fujita, H., Nakatsuka, M. & Kitamura, S. (2009). A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength. Opt. Express 17, 1365413662.
Yuan, H., Lu, Z.W., Wang, Y.L., Zheng, Z.X. & Chen, Y. (2014). Hundred picoseconds laser pulse amplification based on scalable two-cells Brillouin amplifier. Laser Part. Beams 32, 369374.
Zhu, X., Lu, Z. & Wang, Y. (2015). High stability, single frequency, 300 mJ, 130 ps laser pulse generation based on stimulated Brillouin scattering pulse compression. Laser Part. Beams 33, 1115.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed