Skip to main content Accessibility help

Surface wave excitation by a density modulated electron beam in a magnetized dusty plasma cylinder

  • Ved Prakash (a1), Suresh C. Sharma (a2), Vijayshri (a1) and Ruby Gupta (a3)


This paper studies the surface plasma wave excitation via Cerenkov and fast cyclotron interaction by a density modulated electron beam propagating through a magnetized dusty plasma cylinder. The dispersion relation of surface plasma waves has been derived and it has been shown that the phase velocity of waves increases with increase in relative density δ(= nio/ne0, where ni0 is the ion plasma density and ne0 is the electron plasma density) of negatively charged dust grains. The beam radius is taken slightly less than the radius of dusty plasma cylinder. The frequency and the growth rate of the unstable wave instability increases with increase in the value of δ and normalized frequency ω/ωpe. The growth rate of the instability increases with the beam density and scales as one-third power of the beam density in Cerenkov interaction and square root of beam density in fast cyclotron interaction. The dispersion relation of surface plasma waves has been retrieved from the derived dispersion relation by considering that the beam is absent and there are no dust grains in the plasma cylinder.


Corresponding author

Address correspondence and reprint requests to: Ved Prakash, India Meteorological Department, Ministry of Earth Science, Lodi Road, New Delhi-110 003, India. E-mail:


Hide All
Anderson, M., Garate, E., Rostoker, N., Song, Y., Van Drie, A. & Bystritskii, V. (2005). Propagation of intense plasma and ion beams across B-field in vacuum and magnetized plasma. Laser and Particle Beams 23, 117129.
Anisimov, V.N., Baranov, V.Yu., Derkach, O.N., Dykhne, A.M., Malyuta, D.D., Pismennyi, V.D., Rysev, B.P. & Sebrant, A.Yu. (1988). Resonant phenomena in laser excitation of surface waves on solids. IEEE J. Quant. Electron. 24, 675682.
Barnes, W.L., Dereux, A. & Ebbesen, T.W. (2003). Surface plasmon subwavelength optics. Nature (London) 424, 824830.
Bigongiari, A., Raynaud, M. & Riconda, C. (2011). Steady magnetic-field generation via surface-plasma-wave excitation. Phy. Rev. E 84, 01540210154024.
Bouhelier, A., Ignatovich, F., Bruyant, A., Huang, C., Francs, G. Colas Des, Weeber, J.C., Dereux, A., Wiederrecht, G.P. & Novotny, L. (2007). Surface plasmon interference excited by tightly focused laser beams. Opt. Lett. 32, 25352537.
Boyd, G.D., Gould, R.W. & Field, L.M. (1961). Interaction of a modulated electron beam with a plasma. Proceedings of the Institute of Radio Engineers 49, 19061916.
Chen, N.C., Lien, W.C., Liu, C.R., Huang, Y.L., Liu, Y.R., Chou, C., Chang, S.Y. & Ho, C.W. (2011). Excitation of surface plasma wave at TiN/air interface in the Kretschmann geometry. J. Appl. Phy. 109, 04310410431047.
Cheng, Y.C., Su, W.K. & Liou, J.H. (2000). Application of a liquid sensor based on surface plasma wave excitation to distinguish methyl alcohol from ethyl alcohol. Opt. Eng. 39, 311314.
Cramer, N.F., Yeung, L.K. & Vladimirov, S.V. (1998). Surface waves in a magnetized plasma with dust grains. Phys. Plasmas 5, 31263134.
Ezaki, M.A., Kumagai, H., Toyoda, K. & Obara, M. (1995). Surface modification of III–V compound semiconductors using surface electromagnetic wave etching induced by ultraviolet lasers. IEEE J. Sel. Top. Quant. Electron. 1, 841847.
Fink, W. & Schneider, W. (1975). Optical modulation by surface plasma waves. Opt. Acta 22, 443450.
Genet, C. & Ebbesen, T.W. (2007). Light in tiny holes. Nature (London) 445, 3946.
Ghorbanalilu, M. (2012). Second and third harmonics generation in the interaction of strongly magnetized dense plasma with an intense laser beam. Laser Part. Beams 30, 291298.
Girka, I.O., Girka, V.O. & Pavlenko, I.V. (2011 a). Excitation of ion azimuthal surface modes in a magnetized plasma by annular flow of light ions. Progress in Electromagnetics Research 21, 267278.
Girka, V.O., Girka, I.O. & Pavlenko, I.V. (2011 b). Excitation of azimuthal surface modes by relativistic flows of electrons in the high-frequency range. Plasma Phys. Repts 37, 447454.
Gupta, R., Sharma, S.C. & Prakash, V. (2010). Excitation of surface plasma waves by a density-modulated electron beam in a magnetized plasma cylinder. Phys. Plasmas 17, 12210511221056.
Irvine, S.E., Dechant, A. & Elezzabi, A.Y. (2004). Generation of 0.4 femtosecond pulses using impulsively excited surface plasmons. Phys. Rev. Lett. 93, 184801184804.
Irvine, S.E. & Elezzabi, A.Y. (2005). Ponderomotive electron acceleration using surface plasmon waves excited with femtosecond laser pulses. Appl. Phys. Lett. 86, 264102264104.
Jana, M.R., Sen, A. & Kaw, P.K. (1993). Collective effects due to charge-fluctuation dynamics in a dusty plasma. Phys. Rev. E 48, 39303933.
Klimov, V.V., Ducloy, M. & Letokhov, V.S. (2002). A model of an apertureless scanning microscope with a prolate nanospheroid as a tip and an excited molecule as an object. Chem. Phy. Lett. 358, 192198.
Krafft, C., Thevenet, P., Matthiessent, G., Lundin, B., Belmont, G., Lembege, B., Solomon, J., Lavergnat, J. & Lehner, T. (1994). Whistler wave emission by a modulated electron beam. Phys. Rev. Lett. 72, 649652.
Kretschmann, E. & Raether, H. (1968). Radiative decay of nonradiative surface plasmons excited by light. Z. Naturforsch. A 23, 21352136.
Kretschmann, E. (1971). Determination of optical constants of metals by excitation of surface plasmons. Z. Phys. 241, 313324.
Lavergnat, J., Lehner, T. & Matthieussent, G. (1984). Coherent spontaneous emission from a modulated beam injected in a magnetized plasma. Phys. Fluids 27, 16321639.
Lee, M.J. & Jung, Y.D. (2005). Magnetic field effects on surface ion plasma wave in semi-bounded magnetized dusty plasma. Z. Natursch. 60, 503506.
Lee, S.C., Krishna, S. & Brueck, S.R.J. (2010). Surface plasma wave excitation at a 2-D corrugated metal/semiconductor interface for infrared photodetectors. AIP Proceedings of the 30 thConference on Physics Semiconductors.
Liu, C.S. & Tripathi, V.K. (2007). Electromagnetic Theory for Telecommunications. Cambridge: Cambridge university press.
Liu, C.S. & Tripathi, V. K. (2000). Excitation of surface plasma waves over metallic surfaces by lasers and electron beams. IEEE Trans. Plasma Sci. 28, 353358.
Ostrikov, K.N., Yu, M.Y. & Sugai, H. (1999). Standing surface waves in a dust-contaminated large-area planar plasma source. J. Appl. Phys. 86, 24252430.
Paknezhad, A. & Dorranian, D. (2011). Nonlinear backward Raman scattering in the short laser pulse interaction with a cold underdense transversely magnetized plasma. Laser Part. Beams 29, 373380.
Parashar, J., Pandey, H.D. & Tripathi, V.K. (1998). Laser excitation of surface waves over a dense plasma. J. Plasma Phys. 59, 97102.
Prakash, V. & Sharma, S.C. (2009). Excitation of surface plasma waves by an electron beam in a magnetized dusty plasma. Phys. Plasmas 16, 09370310937039.
Saini, N.S. & Gill, T.S. (2006). Self-focusing self-phase modulation of an elliptic Gaussian laser beam in collisionless magnetoplasma. Laser Part. Beams 24, 447453.
Sharma, R.P., Monika, A., Sharma, P., Chauhan, P. & Ji, A. (2010). Interaction of high power laser beam with magnetized plasma and THz generation. Laser Parti. Beams 28, 531537.
Sharma, S.C. & Srivastava, M.P. (2001). Ion beam driven ion-cyclotron waves in a plasma cylinder with negative ions. Phys. Plasmas 8, 679686.
Sharma, S.C. & Sugawa, M. (1999). The effect of dust charge fluctuations on ion cyclotron wave instability in the presence of an ion beam in a plasma cylinder. Phys. Plasmas 6, 444448.
Sharma, S.C. & Walia, R. (2008). Excitation of lower hybrid waves by a spiraling ion beam in a magnetized dusty plasma cylinder. Phys. Plasmas 15, 09370310937035.
Smolyaninov, I.I., Elliott, J., Zayats, A.V. & Davis, C.C. (2005). Far-field optical microscopy with a nanometer-scale resolution based on the in-phase image magnification by surface plasmon polaritons. Phy. Rev. Lett. 94, 05740110574014.
Shukla, P.K. & Eliasson, B. (2009). Fundamentals of dust-plasma interactions. Rev. Mod. Phys. 81, 2544.
Shukla, P.K. & Mamun, A.A. (2002). Introduction to Dusty Plasma Physics. Institute of Physics, Bristol, UK.
Trivelpiece, A.W. & Gould, R.W. (1959). Space charge waves in cylindrical plasma columns. J. Appl. Phys. 30, 17841793.
Verma, U. & Sharma, A.K. (2011). Nonlinear electromagnetic Eigen modes of a self created magnetized plasma channel and its stimulated Raman scattering. Laser and Particle Beams 29, 471477.
Welsh, G.H., Hunt, N.T. & Wynne, K. (2007). Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating. Phys. Rev. Lett. 98, 026803026806.


Related content

Powered by UNSILO

Surface wave excitation by a density modulated electron beam in a magnetized dusty plasma cylinder

  • Ved Prakash (a1), Suresh C. Sharma (a2), Vijayshri (a1) and Ruby Gupta (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.