Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-16T09:38:02.141Z Has data issue: false hasContentIssue false

Surface plasmon enhanced electron acceleration with few-cycle laser pulses

Published online by Cambridge University Press:  12 March 2009

P. Dombi*
Affiliation:
Research Institute for Solid-State Physics and Optics, H-1121 Budapest, Konkoly-Thege M. út 29-33, Hungary
P. Rácz
Affiliation:
Research Institute for Solid-State Physics and Optics, H-1121 Budapest, Konkoly-Thege M. út 29-33, Hungary
B. Bódi
Affiliation:
Research Institute for Solid-State Physics and Optics, H-1121 Budapest, Konkoly-Thege M. út 29-33, Hungary
*
Address correspondence and reprint requests to: Péter Dombi, Research Institute for Solid-State Physics and Optics, H-1121 Budapest, Konkoly-Thege M. út 29-33, Hungary. phone: +361 392 2222 ext. 3609. E-mail: dombi@szfki.hu

Abstract

Surface plasmon enhanced electron acceleration is a recently discovered efficient particle acceleration phenomenon in the nanoscale-confined field of surface electromagnetic waves. For the generation and spatial/spectral control of keV-energy electrons generated, this way few-cycle laser pulses can be utilized particularly well. We present numerical results based on a simple model of this phenomenon analogous to the three-step model of high harmonic generation. We identify those parameter regimes where the emitted electron beam is highly directional and monoenergetic opening the door to novel ultrafast applications and methods.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aeschlimann, M., Bauer, M., Bayer, D., Brixner, T., García de Abajo, F.J., Pfeiffer, W., Rohmer, M., Spindler, C. & Steeb, F. (2007). Adaptive subwavelength control of nano-optical fields. Nat. 446, 301304.CrossRefGoogle ScholarPubMed
Apolonski, A., Dombi, P., Paulus, G.G., Kakehata, M., Holzwarth, R., Udem, T., Lemell, C., Torizuka, K., Burgdörfer, J., Hänsch, T.W. & Krausz, F. (2004). Observation of light-phase-sensitive photoemission from a metal. Phys. Rev. Lett. 92, 073902.CrossRefGoogle ScholarPubMed
Chen, Z.L., Unick, C., Vafaei-Najafabadi, N., Tsui, Y.Y., Fedosejevs, R., Naseri, N., Masson-Laborde, P.E. & Rozmus, W. (2008). Quasi-monoenergetic electron beams generated from 7 TW laser pulses in N-2 and He gas targets. Laser Part. Beams 26, 147155.CrossRefGoogle Scholar
Corkum, P.B. (1993). Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 19941997.CrossRefGoogle ScholarPubMed
Dombi, P., Apolonski, A., Lemell, C., Paulus, G.G., Kakehata, M., Holzwarth, R., Udem, T., Torizuka, K., Burgdörfer, J., Hänsch, T.W. & Krausz, F. (2004). Direct measurement and analysis of the carrier-envelope phase in light pulses approaching the single-cycle regime. New J. Phys. 6, 39.CrossRefGoogle Scholar
Dombi, P., Krausz, F. & Farkas, G. (2006). Ultrafast dynamics and carrier-envelope phase sensitivity of multiphoton photoemission from metal surfaces. J. Mod. Opt. 53, 163172.CrossRefGoogle Scholar
Dombi, P. & Antal, P. (2007). Investigation of a 200 nJ Ti:sapphire oscillator for white light generation. Laser Phys. Lett. 4, 538542.CrossRefGoogle Scholar
Dombi, P., Antal, P., Fekete, J., Szipöcs, R. & Várallyay, Z. (2007). Chirped-pulse supercontinuum generation with a long-cavity Ti:sapphire oscillator. Appl. Phys. B 88, 379384.CrossRefGoogle Scholar
Dombi, P. & Rácz, P. (2008). Ultrafast monoenergetic electron source by optical waveform control of surface plasmons. Opt. Express 16, 28872893.CrossRefGoogle ScholarPubMed
Eckle, P., Pfeiffer, A., Cirelli, C., Staudte, S., Dörner, R., Muller, H.G., Büttiker, M. & Keller, U. (2008). Attosecond ionization and tunneling delay time measurements. Sci 322, 15251529.CrossRefGoogle ScholarPubMed
Fill, E., Veisz, L., Apolonski, A. & Krausz, F. (2006). Sub-fs electron pulses for ultrafast electron diffraction. New J. Phys. 8, 272.CrossRefGoogle Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Fortier, T.M., Roos, P.A., Jones, D.J., Cundiff, S.T.R., Bhat, R.D. & Sipe, J.E. (2004). Carrier-envelope phase-controlled quantum interference of injected photocurrents in semiconductors. Phys. Rev. Lett. 92, 147403.CrossRefGoogle ScholarPubMed
Gupta, D.N. & Suk, H. (2007). Electron acceleration to high energy by using two chirped lasers. Laser Part. Beams 25, 3136.CrossRefGoogle Scholar
Hommelhoff, P., Kealhofer, C. & Kasevich, M.A. (2006). Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses. Phys. Rev. Lett. 97, 247402.CrossRefGoogle ScholarPubMed
Irvine, S.E., Dechant, A. & Elezzabi, A.Y. (2004). Generation of 0.4-keV femtosecond electron pulses using impulsively excited surface plasmons. Phys. Rev. Lett. 93, 184801.CrossRefGoogle ScholarPubMed
Irvine, S.E. & Elezzabi, A.J. (2006). Surface-plasmon-based electron acceleration. Phys. Rev. A 73, 013815.CrossRefGoogle Scholar
Irvine, S.E., Dombi, P., Farkas, G. & Elezzabi, A.Y. (2006). Influence of the carrier-envelope phase of few-cycle pulses on ponderomotive surface-plasmon electron acceleration. Phys. Rev. Lett. 97, 146801.CrossRefGoogle ScholarPubMed
Karmakar, A. & Pukkov, A. (2007). Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses. Laser Part. Beams 25, 371377.CrossRefGoogle Scholar
Kulander, K.C., Schafer, K.J. & Krause, J.L. (1993). Dynamics of Short-Pulse Excitation, Ionization and Harmonic Conversion. New York: Plenum.CrossRefGoogle Scholar
Kupersztych, J., Monchicourt, P. & Raynaud, M. (2001). Ponderomotive acceleration of photoelectrons in surface-plasmon-assisted multiphoton photoelectric emission. Phys. Rev. Lett. 86, 51805183.CrossRefGoogle ScholarPubMed
Lemell, C., Tong, X.-M., Krausz, F. & Burgdörfer, J. (2003). Electron emission from metal surfaces by ultrashort pulses: Determination of the carrier-envelope phase. Phys. Rev. Lett. 90, 076403.CrossRefGoogle ScholarPubMed
Lobastov, V.A., Srinivasan, R. & Zewail, A.H. (2005). Four-dimensional ultrafast electron microscopy. Proc. Nat. Acad. Sci. 102, 70697073.CrossRefGoogle ScholarPubMed
Malka, V. (2002). Charged particle source produced by laser-plasma interaction in the relativistic regime. Laser Part. Beams 20, 217221.CrossRefGoogle Scholar
Mücke, O.D., Tritschler, T., Wegener, M., Morgner, U., Kärtner, F.X., Khitrova, G. & Gibbs, H.M. (2004). Carrier-wave Rabi flopping: role of the carrier-envelope phase. Opt. Lett. 29, 21602162.CrossRefGoogle ScholarPubMed
Naumov, S., Fernandez, A., Graf, R., Dombi, P., Krausz, F. & Apolonski, A. (2005). Approaching the microjoule frontier with femtosecond laser oscillators. New. J. Phys. 5, 216.CrossRefGoogle Scholar
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.CrossRefGoogle Scholar
Niu, H.Y., He, X.T., Qiao, B. & Zhou, C.T. (2008). Reasonant acceleration of electrons by intense circularly polarized Gaussian laser pulses. Laser Part. Beams 26, 5159.CrossRefGoogle Scholar
Raether, H. (1988). Surface Plasmons on Smooth and Rough Surfaces and on Gratings. New York: Springer.CrossRefGoogle Scholar
Reider, G. (2004). XUV attosecond pulses: Generation and measurement. J. Phys. D 37, R37R48.CrossRefGoogle Scholar
Ropers, C., Solli, D.R., Schulz, C.P., Lienau, C. & Elsaesser, T. (2007). Localized multiphoton emission of femtosecond electron pulses from metal nanotips. Phys. Rev. Lett. 98, 043907.CrossRefGoogle ScholarPubMed
Siwick, B.J., Dwyer, J.R., Jordan, R.E. & Miller, R.J.D. (2003). An atomic-level view of melting using femtosecond electron diffraction. Sci. 302, 13821385.CrossRefGoogle ScholarPubMed
Stockman, M., Kling, M.F., Krausz, F. & Kleineberg, U. (2007). Attosecond nanoplasmonic field microscope. Nat. Photon. 1, 539544.CrossRefGoogle Scholar
Varró, S. & Farkas, G. (2008). Attosecond electron pulses from interference of above-threshold de Broglie waves. Laser Part. Beams 26, 920.CrossRefGoogle Scholar
Zawadzka, J., Jaroszynski, D., Carey, J.J. & Wynne, K. (2001). Evanescent-wave acceleration of ultrashort electron pulses. Appl. Phys. Lett. 79, 21302132.CrossRefGoogle Scholar