Skip to main content Accessibility help
×
Home

Strong terahertz radiation generation by beating of two x-mode spatial triangular lasers in magnetized plasma

  • Prateek Varshney (a1), Vivek Sajal (a1), Sweta Baliyan (a2), Navneet K. Sharma (a1), Prashant K. Chauhan (a1) and Ravindra Kumar (a1)...

Abstract

Resonant THz radiation generation is proposed by beating of two spatial-triangular laser pulses of different frequencies (ω1, ω2) and wave numbers $\lpar \vec k_1 \comma \; \vec k_2 \rpar $ in plasma having external static magnetic field. Laser pulses co-propagating perpendicular to a dc magnetic field exert a nonlinear ponderomotive force on plasma electrons, imparting them an oscillatory velocity with finite transverse and longitudinal components. Oscillatory plasma electrons couple with periodic density ripples n = nq0eiqz to produce a nonlinear current, i.e., responsible for resonantly driving terahertz radiation at $\lpar {\rm \omega} = {\rm \omega} _1 - {\rm \omega} _2 \comma \; \vec k = \vec k_1 - \vec k_2 + \vec q\rpar $ . Effects of THz wave frequency, laser beam width, density ripples, and applied magnetic field are studied for the efficient THz radiation generation. The frequency and amplitude of THz radiation were observed to be better tuned by varying dc magnetic field strength and parameters of density ripples (amplitude and periodicity). An efficiency about 0.02 is achieved for laser intensity of 2 × 1015 W/cm2 in a plasma having density ripples about 30%, plasma frequency about 1 THz and magnetic field about 100 kG.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Strong terahertz radiation generation by beating of two x-mode spatial triangular lasers in magnetized plasma
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Strong terahertz radiation generation by beating of two x-mode spatial triangular lasers in magnetized plasma
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Strong terahertz radiation generation by beating of two x-mode spatial triangular lasers in magnetized plasma
      Available formats
      ×

Copyright

Corresponding author

Address correspondence and reprint requests to: Vivek Sajal, Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida-201307, Uttar Pradesh, India. E-mail: vsajal@rediffmail.com

References

Hide All
Abo-Bakr, M., Feikes, J., Holldack, K., Kuske, P., Peatman, W.B., Schade, U., Wustefeld, G. & Hübers, H.W. (2003). Brilliant, coherent far-infrared (THz) synchrotron radiation. Phys. Rev. Lett. 90, 094801.
Bhasin, L. & Tripathi, V.K. (2011). Terahertz generation from laser filaments in the presence of a static electric field in a plasma. Phys. Plasma 18, 123106.
Chen, F.F. (1983). Introduction to Plasma Physics and Controlled Fusion. New York: Plenum Press.
Carr, G.L., Martin, M.C., Mckinney, W.R., Jordan, K., Neil, G.R. & Williams, G.P. (2002). High-power terahertz radiation from relativistic electrons. Nat. (London) 420, 153.
D'amico, C., Houard, A., Franco, M., Prade, B., Mysyrowicz, A., Couairon, V. & Tikhonchuk, V.T. (2007). Conical forward THz emission from femtosecond-laser-beam filamentation in air. Phys. Rev. Lett. 98, 235002.
Dragoman, D. & Dragoman, M. (2004). Time-Frequency signal processing of terahertz pulses. App. Opt. 43, 3848.
Dua, H.W., Chena, M., Shenga, Z.M. & Zhanga, J. (2011). Numerical studies on terahertz radiation generated from two color laser pulse interaction with gas targets. Laser Part. Beams 29, 447.
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252.
Garg, V. & Tripathi, V.K. (2010). Resonant third harmonic generation of an infrared laser in a semiconductor wave guide. Laser Part. Beams 28, 327.
Ghorbanalilu, M. (2012). Second and third harmonics generations in the interaction of strongly magnetized dense plasma with an intense laser beam. Laser Part. Beams 30, 291.
Giulietti, D., Banfi, G.P., Deha, I., Giulietti, A., Lucchesi, M., Nocera, L. & Zun, C.Z. (1988). Second harmonic generation in underdense plasma. Laser Part. Beams 6, 141.
Hamster, H., Sullivan, A., Gordon, S., White, W. & Falcone, R.W. (1993). Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71, 2725.
Hamster, H., Sullivan, A., Gordon, S. & Falcone, R.W. (1994). Short-pulse terahertz radiation from high-intensity-laser-produced plasmas. Phys. Rev. E 49, 671.
Hu, G.Y., Shen, B., Lei, A., Li, R. & Xu, Z. (2010). Transition Cherenkov radiation of terahertz generated by superluminous ionization front in femtosecond laser filament. Laser Part. Beams 28, 399.
Kim, K.Y., Taylor, A.J., Glownia, T.H. & Rodriguez, G. (2008). Coherent control of terahertz super continuum generation in ultrafast laser–gas interactions. Nat. Photon. 2, 605.
Kumar, K.K.M. & Tripathi, V.K. (2013). Third harmonic generation of a nonlinear laser Eigen mode of a self sustained plasma channel. Laser Part. Beams 31, 163.
Leemans, W.P., Geddes, C.G.R., Faure, J., Tóth, C.S.Tilborg, J.V., Schroeder, C.B., Esarey, E., Fubiani, G., Auerbach, D., Marcelis, B., Carnahan, M.A., Kaindl, R.A., Byrd, J. & Martin, M.C. (2003). Observation of Terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary. Phys. Rev. Lett. 91, 074802.
Liu, C.S. & Tripathi, V.K. (2009). Tunable terahertz radiation from a tunnel ionized magnetized plasma cylinder. J. Appl. Phy. 105, 013313.
Malik, A.K., Malik, H.K. & Stroth, U. (2012). Terahertz radiation generation by beating of two spatial-Gaussian lasers in the presence of a static magnetic field. Phy. Rev. E 85, 016401.
Malik, A.K. & Malik, H.K. (2012). Strong and collimated THz radiation by super Gaussian lasers. Europ. Phys. Lett. 100, 45001.
Malik, A.K., Malik, H.K. & Nishida, Y. (2011). Terahertz radiation generation by beating of two spatial-Gaussian lasers. Phys. Lett. A 375, 1191.
Nafil, R.Q., Singh, M., Al-Janabi, A.H. & Sharma, R.P. (2013). THz generation by the beating of two high intense laser beams. J. Plasma Phys. 79, 657.
Panwar, A., Ryu, C.M. & Kumar, A. (2013). Effect of plasma channel non-uniformity on resonant third harmonic generation. Laser Part. Beams 31, 531.
Penano, J., Sprangle, P., Hafizi, B., Gordo, D. & Serafim, P. (2010). Terahertz generation in plasmas using two-color laser pulses. Phys. Rev. E 81, 026407.
Schillinger, H. & Sauerbrey, R. (1999). Electrical conductivity of long plasma channels in air generated by self-guided femtosecond laser pulses. Appl. Phys. B 68, 753.
Schroeder, C.B., Esarey, E., Tilborg, J.V. & Leemans, W.P. (2004). Theory of coherent transition radiation generated at a plasma-vacuum interface. Phys. Rev. E 69, 016501.
Sharma, R.P., Monika, M., Sharma, P., Chauhan, P. & Jia, A. (2010). Interaction of high power laser beam with magnetized plasma and THz generation. Laser Part. Beams 28, 531.
Sheng, Z.M., Wu, H.C., Li, K. & Zhang, J. (2004). Terahertz radiation from the vacuum-plasma interface driven by ultrashort intense laser pulses. Phys. Rev. E 69, 025401.
Sheng, Z.M., Mima, K. & Zhang, J. (2005). Powerful terahertz emission from laser wake fields excited in inhomogeneous plasmas. Phys. Plasmas 12, 123103.
Siegel, P.H. (2002). Terahertz technology. IEEE Trans. Microwave Theo. Tech. 50, 910.
Sizov, F. (2010). THz radiation sensors. Opt. Electron. Rev. 18, 10.
Sprangle, P., Penano, J. R., Hafizi, B. & Kapetanakos, C.A. (2004). Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces. Phys. Rev. E 69, 066415.
Tani, M., Gu, P., Hyodo, M., Sakai, K. & Hidaka, T. (2000). Generation of coherent terahertz radiation by photo mixing of dual-mode lasers. Opt. Quan. Electron. 32, 503520.
Tripathi, V.K. & Liu, C.S. (1990). Plasma effects in a free electron laser. IEEE Trans. Plasma Sci. 18, 466.
Verma, U. & Sharma, A.K. (2009). Laser second harmonic generation in a rippled density plasma in the presence of azimuthal magnetic field. Laser Part. Beams 27, 719.
Verma, U. & Sharma, A.K. (2011). Nonlinear electromagnetic Eigen modes of a self created magnetized plasma channel and its stimulated Raman scattering. Laser Part. Beams 29, 471.
Varshney, P., Sajal, V., Singh, K.P., Kumar, R. & Sharma, N.K. (2013). Strong terahertz radiation generation by beating of extra-ordinary mode lasers in a rippled density magnetized plasma. Laser Part. Beams 31, 337.
Varshney, P., Sajal, V., Chauhan, P., Kumar, R. & Sharma, N.K. (2014). Effects of transverse static electric field on terahertz radiation generation by beating of two transversely modulated Gaussian laser beams in a plasma. Laser Part. Beams 32, 375.
Wu, H.C., Sheng, Z.M. & Zhang, J. (2008). Single-cycle powerful megawatt to gigawatt terahertz pulse radiated from a wavelength-scale plasma oscillator. Phys. Rev. E 77, 046405.
Xie, X., Dai, J.M. & Zhang, X.C. (2006). Coherent control of THz wave generation in ambient air. Phys. Rev. Lett. 96, 075005.

Keywords

Strong terahertz radiation generation by beating of two x-mode spatial triangular lasers in magnetized plasma

  • Prateek Varshney (a1), Vivek Sajal (a1), Sweta Baliyan (a2), Navneet K. Sharma (a1), Prashant K. Chauhan (a1) and Ravindra Kumar (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed