Skip to main content Accessibility help
×
Home

Stimulated Raman backscattering of filamented hollow Gaussian beams

  • Ram Kishor Singh (a1) and R.P. Sharma (a1)

Abstract

This paper presents a model for excitation of electron plasma wave and resulting stimulated Raman scattering due to presence of a laser beam carrying null intensity in center (hollow Gaussian beam) in a collisionless plasma. We have studied the self-focusing of the hollow Gaussian beam and its effect on back stimulated Raman scattering process in the presence of ponderomotive nonlinearity. To understand the nature of propagation of the hollow Gaussian beam, electron plasma wave and back reflectivity, a paraxial-ray approximation has been invoked. It is predicted that self-focusing and back reflectivity reduces for higher order of hollow Gaussian beam.

Copyright

Corresponding author

Address correspondence and reprint requests to: Ram Kishor Singh, Centre for Energy Studies, IIT Delhi, India110016. E-mail: ram007kishor@gmail.com

References

Hide All
Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp. 10, 609636.
Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C. & Woerdman, J.P. (1992). Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A. 45, 81858189.
Cai, Y., Lu, X. & Lin, Q. (2003). Hollow Gaussian beam and their propagation properties. Opt. Lett. 28, 10841086.
Cai, Y. & Zhang, L. (2006). Propagation of various dark hollow beams in a turbulent atmosphere. Opt. Express 14, 13531367.
Cai, Y. & Lin, Q. (2004). Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems. J. Opt. Soc. Am. A 21, 6.
Fuchs, J., Labaune, C., Depierreux, S., Tikhonchuk, V.T. & Baldis, H.A. (2000). Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. I. Experiment. Phys. Plasmas 7, 46594668.
Grow, D.T., Ishaaya, A.A., Vuong, L.T. & Gaeta, A.L. (2006). Collapse dynamics of supper-Gaussian beam. Opt. Soc. Am. 14, 5468.
Gupta, Ruchika., Sharma, Prerana., Rafat, M. & Sharma, R.P. (2011). Cross-focusing of two hollow Gaussian laser beam in plasma. Laser Part. Beams 29, 227230.
Gill, T.S., Mahajan, R. & Kaur, R. (2010). Relativistic and ponderomotive effects on evolution of dark hollow Gaussian electromagnetic beams in a plasma. Laser Part. Beams 28, 521529.
Herman, R.M. & Wiggins, T.A. (1991). Production and uses of diffractionless beams. J. Opt. Soc. Am. A 8, 932.
Kaw, P.K., Schmidt, G. & Wilcox, T. (1973). Filamentation and trapping of electromagnetic radiation in plasma. Phys. Fluids 16, 1522.
Kruer, W.L. (1974). The Physics of Laser Plasma Interaction. New York: Addison-Wesley.
Kirkwood, R.K., Moody, J.D., Niemann, C., Williams, E.A., Langdon, A.B., Landen, O.L., Divol, L. & Suter, L.J. (2006). Observation of polarization dependent Raman scattering in a large scale plasma illuminated with multiple laser beam. Phys. Plasmas 13, 082703.
Lee, H.S., Stewart, B.W., Choi, K. & Fenichel, H. (1994). Holographic nondiverging hollow beam. Phys. Rev. A 49, 4922.
Michelberg, H.M., Durfee, C.G. III & Mcilarth, T.J. (1995). High-order frequency conversion in the plasma waveguide. Phys. Rev. Lett. 75, 24942497.
Mendonca, J.T., Thide, B. & Then, H. (2009). Stimulated Raman and Brillouin backscattering of collimated beams carrying orbital angular momentum. Phys. Rev. Lett. 102, 185005.
Matsuoka, T., Lei, A., Yabuuchi, T., Adumi, K., Zheng, J., Kodamal, R., Sawai, K., Suzuki, K., Kitagawa, Y., Norimatsu, T., Nagai, K., Nagatomo, H., Izawa, Y., Mima, K., Sentoku, Y. & Tanaka, K.A. (2008). Focus optimization of relativistic self- focusing for anomalous laser penetration into overdense plasmas (super- penetration). Plasma Phys. Control. Fusion 50, 10501.
Sodha, M.S., Misra, S.K. & Misra, S. (2009). Focusing of dark hollow Gaussian electromagnetic beams in a plasma. Laser Part. Beams 27, 5768.
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Self focusing of laser beams in plasmas and semiconductors. Prog. Opt. E 3, 169265.
Sprangle, P. & Esarey, E. (1991). Stimulated backscattered harmonic generation from intense laser interactions with beams and plasmas. Phys. Rev. Lett. 67, 20212024.
Sprangle, P., Esarey, E., Ting, A. & Joyce, G. (1988). Laser wakefield acceleration and relativistic optical guiding. Appl. Phys. Lett. 53, 21462148.
Song, Y., Milam, D. & Hill, W.T. (1999). Long, narrow all-light atom guide. Opt. Lett. 24, 1805.
Tabak, M., Hammer, J., Glinisky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultra powerful lasers. Phys. Plasmas 1, 16261634.
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267.
Umstadter, D., Chen, S.Y., Maksimchuk, A., Mourou, G. & Wagner, R. (1996). Nonlinear optics in relativistic plasmas and laser wakefield acceleration of electrons. Sci. 273, 472475.
Umstadter, D., Kim, J.K. & Dodd, E. (1996). Laser injection of ultrashort electron pulses into wakefield plasma waves. Phys. Rev. Lett. 76, 2073.
Umstadter, D. & Norris, T.B. (1997). Nonlinear optics with relativistic electrons. IEEE J. Quantum Electr. 33, 1877.
Wang, X. & Littman, M.G. (1993). Laser cavity for generation of variable-radius rings of light. Opt. Lett. 18, 767.

Keywords

Related content

Powered by UNSILO

Stimulated Raman backscattering of filamented hollow Gaussian beams

  • Ram Kishor Singh (a1) and R.P. Sharma (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.