Skip to main content Accessibility help

Stimulated compton scattering of surface plasma wave excited over metallic surface by a laser

  • Deepika Goel (a1), Prashant Chauhan (a1), Anshu Varshney (a1), D.B. Singh (a2) and Vivek Sajal (a1)...


A high-frequency surface plasma wave (SPW) excited over metallic surface irradiated by a laser beam, can undergo stimulated Compton scattering if phase velocity of daughter plasma wave is equal to the Fermi velocity for metal. The pump SPW ${\rm (}{{\rm \omega} _0},{\vec k_{0{\rm z}}})$ parametrically excites a quasi-electrostatic plasma wave ${\rm (\omega}, {\vec k_{\rm z}})$ and a backscattered sideband SPW ${\rm (}{{\rm \omega} _1},{\vec k_{1{\rm z}}})$ at resonance ω0 = ω − ω1 and ${\vec k_{0{\rm z}}} = {\vec k_{\rm z}} - {\vec k_{1{\rm z}}}$ . The growth rate of Compton process increases with the frequency of incident laser and turns out to be 5.425 × 1010 rad/s at laser frequency ω0 = 0.7595 × 1015 rad/s for incident laser amplitude A0L = 11 × 1011 V/m, laser spot size b = 1.38 × 10−5 m, and free electron density of metal n0 = 5.85 × 1028/m3. The excitation of highly damped quasi-electrostatic plasma wave in this parametric process provide a better nonlinear option for surface heating as compared with direct laser heating. The process can also be used for diagnostics purposes.


Corresponding author

Address correspondence and reprint requests to: Vivek Sajal, Department of Physics and Material Science & Engineering, Jaypee Institute of Information Technology, Noida-201307, Uttar Pradesh, India. E-mail:


Hide All
Aliev, Yu.M. & Brodin, G. (1990). Instability of strongly inhomogeneous plasma. Phys. Rev. A 42, 2374.
Berndt, R., Gimzewski, J.K. & Johansson, P. (1991). Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces. Phys. Rev. Lett. 67, 3796.
Brodin, G. & Lundberg, J. (1991). Parametric excitation of surface waves in a strongly inhomogeneous plasma. J. Plasma Phys. 46, 299307.
Catchpole, K.R. & Polman, A. (2008). Plasmonic solar cells. Opt. Express 16, 2179321800.
Drake, R.P., Baldis, R.L., Kruer, W.L., Williams, E.A., Estabrook, K., Johnston, T.W. & Young, P.E. (1990). Observation of stimulated Compton scattering from resonant electrons in a laser produced plasma. Phys. Rev. Lett. 64, 1990.
Raether, H. (1988). Surface plasmons on smooth and rouge surfaces and on gratings. New York: Springer-Verlag.
Hao, L., Liu, Z.J., Hu, X.Y. & Zheng, C.Y. (2013). Competition between the stimulated Raman and Brillouin scattering under the strong damping condition. Laser Part. Beams 31, 203209.
Kretschmann, E. & Reather, H. (1968). Radiative decay of non radiative surface plasmons excited by light. Z. Naturforschung 23a, 21352136.
Kumar, N. & Tripathi, V.K. (2007). Parametric excitation of surface plasma waves in an overdense plasma irradiated by an ultrashort laser pluse. Phys. Plasma 14, 103108.
Lee, H.J. & Cho, S.H. (1999). Parametric coupling of light wave and surface plasma waves. Phys. Rev. E 59, 35033511.
Liu, C.S. & Tripathi, V.K. (1998). Diffraction-limited laser excitation of a surface plasma wave and its scattering on a rippled metallic surface. IEEE J. Quantum Electron. 34, 1503.
Liu, C.S. & Tripathi, V.K. (2000). Excitation of surface plasma waves over metallic surfaces by lasers and electron beams. IEEE Trans. Plasma Sci. 28, 2.
Macchi, A., Battaglini, M., Cornolti, F., Lisseikina, T.V., Pegoraro, F., Ruhl, H. & Vshivkov, V.A. (2002). Parametric generation of surface deformations in laser interaction with overdense plasmas. Laser Part. Beams 20, 337340.
Prashar, J., Pandey, H.D. & Tripathi, V.K. (1998). Laser excitation of surface waves over a dense plasma. J. Plasma Phys. 59, 97102.
Rani, M., Sharma, N.K. & Sajal, V. (2013). Localized surface plasmon resonance based fiber optic sensor with nanoparticles. Opt. Commun. 292, 92100.
Shin, H. & Fan, S. (2006). All angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure. Phys. Rev. Lett. 96, 073907.
Shivarova, A., Stoychev, T. & Russeva, S. (1975). Surface wave propagation along a current carrying warm plasma. J. Phys. D: Appl. Phys. 8, 383.
Shoucri, M. & Afeyan, B. (2010). Studies of the interaction of an intense laser beam normally incident on an overdense plasma. Laser Part. Beams 28, 129147.
Singh, D.B. & Tripathi, V.K. (2007). Laser beat wave excitation of surface plasma wave and material ablation. Phys. Plasma 14, 103115.
Singh, R.K. & Sharma, R.P. (2013). Stimulated Raman backscattering of filamented hollow Gaussian beams. Laser Part. Beams 31, 387394.
Shin, Y.M., So, J.K., Jang, K.H., Won, J.H., Srivastava, A. & Park, G.S. (2007). Evanescent tunnelling of an effective surface plasmon excited by convection electrons. Phys. Rev. Lett. 99, 147402.
Tinakiche, N., Annou, R. & Tripathi, V.K. (2012). Three-wave coupling in electron-positron-ion plasmas. Phys. Plasmas 19, 072114.
Verma, U. & Sharma, A.K. (2011). Nonlinear electromagnetic Eigen modes of a self created magnetized plasma channel and its stimulated Raman scattering. Laser Part. Beams 29, 471477.
Vyas, A., Singh, R.K. & Sharma, R.P. (2014). Study of coexisting stimulated Raman and Brillouin scattering at relativistic laser power. Laser Part. Beams 32, 657663.
Zhaoquan, C., Guangqing, X., Minghai, L., Yelin, H., Xiaoliang, Z., Ping, L., Qiyan, Z. & Xiwei, H. (2012). Character diagnosis for surface-wave plasmas excited by surface plasmon polaritons. Plasma Sci. Technol. 14, 8.


Related content

Powered by UNSILO

Stimulated compton scattering of surface plasma wave excited over metallic surface by a laser

  • Deepika Goel (a1), Prashant Chauhan (a1), Anshu Varshney (a1), D.B. Singh (a2) and Vivek Sajal (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.