Skip to main content Accessibility help
×
Home

A setup for studies of laser-driven proton acceleration at the Lund Laser Centre

  • B. Aurand (a1), M. Hansson (a1), L. Senje (a1), K. Svensson (a1), A. Persson (a1), D. Neely (a2), O. Lundh (a1) and C.-G. Wahlström (a1)...

Abstract

We report on a setup for the investigation of proton acceleration in the regime of target normal sheath acceleration. The main interest here is to focus on stable laser beam parameters as well as a reliable target setup and diagnostics in order to do extensive and systematic studies on the acceleration mechanism. A motorized target alignment system in combination with large target mounts allows for up to 340 shots with high repetition rate without breaking the vacuum. This performance is used to conduct experiments with a split mirror setup exploring the effect of spatial and temporal separation between the pulses on the acceleration mechanism and on the resulting proton beam.

Copyright

Corresponding author

Address correspondence and reprint request to Bastian Aurand, Department of Physics, Lund University, 22100 Lund, Sweden. E-mail: bastian.aurand@uni-duesseldorf.de

References

Hide All
Aurand, B., Kuschel, S., Jäckel, O., Rödel, C., Zhao, H.Y., Herzer, S., Paz, A.E., Bierback, J., Polz, J., Elkin, B., Kamakar, A., Gibbon, P., Kaluza, M.C. & Kuehl, T. (2014). Enhanced radiation pressure-assisted acceleration by temporally tuned counter-propagating pulses. Nucl. Inst. Meth. A 740, 033031.
Brenner, C.M., Green, J.S., Robinson, A.P.L., Carroll, D.C., Dromey, B., Foster, P.S., Kar, S., Li, Y.T., Markey, K., Spindloe, C., Streeter, M.J.V., Tolley, M., Wahlström, C.-G., Xu, M.H., Zepf, M., McKenna, P. & Neely, D. (2011). Dependence of laser accelerated protons on laser energy following the interaction of defocused, intense laser pulses with ultra-thin targets. Lasers Part. Beams 29, 345351.
Burza, M., Gonoskov, A., Genoud, G., Persson, A., Svensson, K., Quinn, M., McKenna, P., Marklund, M. & Wahlström, C.-G. (2011). Hollow microspheres as targets for staged laser-driven proton acceleration. New J. Phys. 13, 013030.
Cartwright, B.G. & Shirk, E.K. (1978). A nuclear-track-recording polymer of unique sensitivity and resolution. Nucl. Inst. Meth. A 153, 457460.
Coury, M., Carroll, D.C., Robinson, A.P.L., Yuan, X.H., Brenner, C.M., Burza, M., Gray, R.J., Quinn, M.N., Lancaster, K.L., Li, Y.T., Lin, X.X., Tresca, O., Wahlström, C.-G., Neely, D. & McKenna, P. (2012). Influence of laser irradiated spot size on energetic electron injection and proton acceleration in foil targets. Appl. Phys. Lett. 100, 074105.
Coury, M., Carroll, D.C., Robinson, A.P.L., Yuan, X.H., Brenner, C.M., Burza, M., Gray, R.J., Quinn, M.N., Lancaster, K.L., Li, Y.T., Lin, X.X., Tresca, O., Wahlström, C.-G., Neely, D. & McKenna, P. (2013). Injection and transport properties of fast electrons in ultra-intense laser-solid interactions. Phys. Plasmas 20, 043104.
Daido, H., Nishiuchi, M. & S. Pirozhkov, S. (2012). Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 75, 056401.
Desforges, F.G., Hansson, M., Ju, J.Senje, L., Auder, T.L., Dobosz-Dufrenoy, S., Persson, A., Lundh, Wahlström, C.-G. & Cros, B. (2014). Reproducibility of electron beams from laser wakefield acceleration in capillary tubes. Nucl. Instrum. Meth. A 740, 5459.
Green, J., Borghesi, M., Brenner, C.M., Carroll, D.C., Dover, N.P., Foster, P.S., Gallegos, Pl., Green, S., Kirby, D., Kirkby, K.J., McKenna, P., Merchant, M.J., Najmudin, Z., Palmer, C.A.J., Parker, D., Prasad, R., Quinn, K.E., Rajeev, P.P., Read, M.P., Romagnani, L., Schreiber, J., Streetse, M.J.V., Tresca, O., Wahlström, C.-G., Zeft, M. & Neely, D. (2011). Scintillator-based ion beam profiler for diagnosing laser-accelerated ion beams. SPIE Proc. 8079, 807991.
Hansson, M., Senje, L., Persso, A., Lundh, O., Wahlström, C.-G., Desforges, F.G., Ju, J., Audet, T.L., Cros, B., Dobosz, S. & Monot, P. (2014). Enhanced stability of laser wakefield acceleration using dielectric capillary tubes. Phys. Rev. ST AB 17, 031303.
Hartmann, J. (1900). Bemerkungenüber den Bau und die Justirung von Spektrographen. Z. Instrumentenkunde 20, 1727, 47–58.
Hegelich, B.M., Albright, B.J., Cobble, J., Flippo, K., Letzring, S., Paffett, M., Ruhl, H., Schreiber, J., Schulze, R.K. & Fernández, J.C. (2006). Laser acceleration of quasi-monoenergetic MeV ion beams. Nat. 439, 441444.
Passoni, M., Bertagna, L. & Zani, A. (2010). Target normal sheath acceleration: Theory, comparison with experiments and future perspectives. New J. Phys. 12, 045012.
Primot, J. & Sogno, L. (1995). Achromatic three-wave (or more) lateral shearing interferometer. Z. JOSA A 12, 26792685.
Ramakrishna, B., Murakami, M., Borghesi, M., Ehrentraut, L., Nickles, P.V., Schürer, M., Steinke, S., Psikal, J., Tikhonchuk, V. & Ter-Avetisyan, S. (2010). Laser-driven quasimonoenergetic proton burst from water spray target. Phys. Plasmas 17, 083113.
Robson, L., Simpson, P.T., Clarke, R.J., Ledingham, K.W.D., Lindau, F., Lundh, O., McCanny, T., Mora, P., Neely, D., Wahlström, C.-G., Zepf, M. & McKenna, P. (2007). Scaling of proton acceleration driven by petawatt-laser plasma interactions. Nat. Phys. 3, 5862.
Ruprecht, A.K., Pruss, C., Tiziani, H.J., Wolfgan, O., Peter, L., Arndt, L., Mohr, J. & Lehmann, P. (2005). Confocal micro-optical distance sensor: Principle and design. Z. SPIE Proc. 5856, 128135.
Schreiber, J., Bell, F.Grüner, F., Schramm, U., Geissler, M., Schnüger, Ter-Avetisyan, S., Hegelich, B.M., Cobble, J., Brambrink, E., Fuchs, J., Auderbert, P. & Habs, D. (2006). Analytical model for ion acceleration by high-intensity laser pulses. Phys. Rev. ST AB 97, 045005.
Schwoerer, H., Pfotenhauer, S.Jäckel, O., Amthor, K.-U., Liesfeld, B., Ziegler, W., Sauerbrey, R., Ledingham, K.W.D. & Esirkepov, T. (2006). Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nat. 439, 445448.
Small, R.D., Sernas, V.A. & Page, R.H. (1972). Single beam Schlieren interferometer using a Wollaston prism. Appl. Opt. 11, 858862.
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 56, 219221.
Tresca, O., Carroll, D.C., Yuan, X.H., Aurand, B., Bagnoud, V., Brenner, C.M., Coury, M., Fils, J., Gray, R.J., Kühl, T., Li, C., Li, Y.T., Lin, X.X., Quinn, M.N., Evans, R.G., Zielbauer, B., Roth, M., Neely, D. & McKenna, P. (2011). Controlling the properties of ultra-intense laser proton sources using transverse refluxing of hot electrons in shaped mass-limited targets. Plasma Phys. Contr. Fusion 53, 105008 .
Wilks, S.C., Langon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snaverly, R.A. (2001). Energetic proton generation in ultra- intense laser solid interactions. Phys. Plasmas 8, 542549.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed