Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T04:33:50.891Z Has data issue: false hasContentIssue false

Scattering of carbon ions in the material of the protective membrane of a fast ignition, indirect compression target without cone

Published online by Cambridge University Press:  13 September 2011

Mikhail L. Shmatov*
Affiliation:
Ioffe Physical Technical Institute of RAS, St. Petersburg, Russia
*
Address correspondence and reprint requests to: Mikhail L. Shmatov, Ioffe Physical Technical Institute of RAS, Politekhnicheskaya 26, 194021 St. Petersburg, Russia. E-mail: m.shmatov@mail.ioffe.ru

Abstract

It is shown that scattering of the laser-accelerated carbon ions in the material of the protective membrane of a fast ignition, indirect compression target without cone can result in a significant increase in the hot spot radius and will complicate significantly or even prevent the effective shaping of the bombarded region of the compressed fuel.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albright, B.J., Schmitt, M.J., Fernández, J.C., Cragg, G.E., Tregillis, I., Yin, L. & Hegelich, B.M. (2008). Studies in capsule design for mid-Z ion-driven fast ignition. J. Phys. Conf. Ser. 112, 022029/1–4.CrossRefGoogle Scholar
Atzeni, S. & Tabak, M. (2005). Overview of ignition conditions and gain curves for the fast ignitor. Plasma Phys. Contr. Fusion 47, B769–B776.CrossRefGoogle Scholar
Atzeni, S. (1999). Inertial fusion fast ignitor: Igniting pulse parameter window vs. the penetration depth of the heating particles and the density of the precompressed fuel. Phys. Plasmas 6, 33163326.CrossRefGoogle Scholar
Atzeni, S., Temporal, M. & Honrubia, J.J. (2002). A first analysis of fast ignition of precompressed ICF fuel by laser-accelerated protons. Nucl. Fusion 42, L1L4.CrossRefGoogle Scholar
Barriga-Carrasco, M.D., Maynard, G. & Kurilenkov, Y.K. (2004). Influence of transverse diffusion within the proton beam fast-ignitor scenario. Phys. Rev. E 70, 066407/1–9.CrossRefGoogle ScholarPubMed
Berdonosov, S.S. (1990). Zoloto (Gold). In Fizicheskaya Encyclopedia (Physical Encyclopedia) (Prokhorov, A.M., Ed.), Vol. 2, p. 87. Moscow: Sovetskaya Encyclopedia (in Russian).Google Scholar
Bethe, H.A. (1953). Molière's theory of multiple scattering. Phys. Rev. 89, 12561266.CrossRefGoogle Scholar
Bichsel, H. (1963). Passage of charged particles through matter. In American Institute of Physics Handbook (Gray, D.E., Ed.), Second Edition, pp. 8-20–8-47. New York: McGraw-Hill Book Company, Inc.Google Scholar
Bichsel, H. (1968). Charged-particle interactions. In Radiation Dosimetry (Attix, F.H. and Roesch, W.C., Eds.), Second Edition, vol. 1, pp. 157228. New York: Academic Press.Google Scholar
Borghesi, M., Fuchs, J., Bulanov, S.V., Mackinnon, A.J., Patel, P.K. & Roth, M. (2006). Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fusion Sci. Technol. 49, 412439.CrossRefGoogle Scholar
Bychenkov, V.Yu., Rozmus, W., Maksimchuk, A., Umstadter, D. & Capjack, C.E. (2001). Fast ignitor concept with light ions. Plasma Phys. Rep. 27, 10171020.CrossRefGoogle Scholar
Callahan-Miller, D.A. & Tabak, M. (2000). Progress in target physics and design for heavy ion fusion. Phys. Plasmas 7, 20832091.CrossRefGoogle Scholar
Eidmann, K., Földes, I.B., Löwer, Th., Massen, J., Sigel, R., Tsakiris, G.D., Witkowski, S., Nishimura, H., Kato, Y., Endo, T., Shiraga, H., Takagi, M. & Nakai, S. (1995). Radiative heating of low-Z solid foils by laser-generated x rays. Phys. Rev. E 52, 67036716.CrossRefGoogle ScholarPubMed
Fernández, J.C., Albright, B.J., Flippo, K.A., Hegelich, B.M., Kwan, T.J., Schmitt, M.J. & Yin, L. (2008). Progress on ion based fast ignition. J. Phys. Conf. Ser. 112, 022051/1–4.CrossRefGoogle Scholar
Fernández, J.C., Honrubia, J.J., Albright, B.J., Flippo, K.A., Gautier, D.C., Hegelich, B.M., Schmitt, M.J., Temporal, M. & Yin, L. (2009). Progress and prospects of ion-driven fast ignition. Nucl. Fusion 49, 065004/1–8.CrossRefGoogle Scholar
Gus'kov, S.Yu. (2001). Direct ignition of inertial fusion targets by a laser-plasma ion stream. Quant. Electron. 31, 885890.CrossRefGoogle Scholar
Honrubia, J.J., Fernández, J.C., Temporal, M., Hegelich, B.M. & Meyer-Ter-Vehn, J. (2009). Fast ignition of inertial fusion targets by laser-driven carbon beams. Phys. Plasmas 16, 102701–7.CrossRefGoogle Scholar
Key, M.H. (2007). Status of and prospects for the fast ignition inertial fusion concept. Phys. Plasmas 14, 055502/1–15.CrossRefGoogle Scholar
Key, M.H., Freeman, R.R., Hatchett, S.P., Mackinnon, A.J., Patel, P.K., Snavely, R.A. & Stephens, R.B. (2006). Proton fast ignition. Fusion Sci. Technol. 49, 440452.CrossRefGoogle Scholar
Logan, B.G., Bangerter, R.O., Callahan, D.A., Tabak, M., Roth, M., Perkins, L. J. & Caporaso, G. (2006). Assessment of potential for ion-driven fast ignition. Fusion Sci. Technol. 49, 399411.CrossRefGoogle Scholar
March, N.H. (1983). Origins – The Thomas-Fermi theory. In Theory of the Inhomogeneous Electron Gas (Lundqvist, S. and March, N.H., eds.), pp. 177. New York: Plenum Press.Google Scholar
Marion, J.B. & Zimmerman, B.A. (1967). Multiple scattering of charged particles. Nucl. Instr. Meth. 51, 93101.CrossRefGoogle Scholar
Maynard, G. & Barriga-Carrasco, M.D. (2005). Isochoric heating of DT fuels through PW-laser-produced proton beams. Nucl. Instr. Meth. Phys. Res. A 544, 8490.CrossRefGoogle Scholar
Molière, G. (1948). Theorie der Streuung schneller geladener Teilchen II. Mehrfach- und Vielfachstreuung (Theory of scattering of fast charged particles II. Multiple scattering). Z. Naturforschg. 3a, 7897.CrossRefGoogle Scholar
Pert, G.J. (1979). Model calculations of XUV gain in rapidly expanding cylindrical plasmas II. J. Phys. B: At. Mol. Opt. Phys. 12, 20672079.CrossRefGoogle Scholar
Ramis, R. & Ramírez, J. (2004). Indirectly driven target design for fast ignition with proton beams. Nucl. Fusion 44, 720730.CrossRefGoogle Scholar
Rosen, M.D. & Hammer, J.H. (2005). Analytic expressions for optimal inertial-confinement-fusion hohlraum wall density and wall loss. Phys. Rev. E 72, 056403/1–5.CrossRefGoogle ScholarPubMed
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.CrossRefGoogle ScholarPubMed
Shmatov, M.L. (2003). Some problems related to heating the compressed thermonuclear fuel through the cone. Fusion Sci. Technol. 43, 456467.CrossRefGoogle Scholar
Shmatov, M.L. (2008). Factors determining the choice of the laser-accelerated ions for fast ignition. J. Phys. Conf. Ser. 112, 022061/1–4.CrossRefGoogle Scholar
Shmatov, M.L. (2011). Some factors determining optimum typical ranges of laser-accelerated ions in equimolar D-T fuel. Tech. Phys. Lett. 37, 8790.CrossRefGoogle Scholar
Tabak, M., Hinkel, D., Atzeni, S., Campbell, E.M. & Tanaka, K. (2006). Fast ignition: Overview and background. Fusion Sci. Technol. 49, 254277.CrossRefGoogle Scholar
Taylor, T.B. (1987). Third-generation nuclear weapons. Sci. Am. 256, 22–31,120.CrossRefGoogle Scholar
Temporal, M., Ramis, R., Honrubia, J.J & Atzeni, S. (2009). Fast ignition induced by shocks generated by laser-accelerated proton beams. Plasma Phys. Contr. Fusion 51, 035010/1–10.CrossRefGoogle Scholar
Wilkens, H.L., Nikroo, A., Wall, D.R. & Wall, J.R. (2007). Developing depleted uranium and gold cocktail hohlraums for the National Ignition Facility. Phys. Plasmas 14, 056310/1–6.CrossRefGoogle Scholar