Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T14:26:56.668Z Has data issue: false hasContentIssue false

Scaling stellar jets to the laboratory: The power of simulations

Published online by Cambridge University Press:  08 December 2009

C. Stehlé*
Affiliation:
LERMA, UMR 8112 Observatoire de Paris, CNRS et UPMC, Meudon, France
A. Ciardi
Affiliation:
LERMA, UMR 8112 Observatoire de Paris, CNRS et UPMC, Meudon, France LPP, Vélizy, France
J.-P. Colombier
Affiliation:
LERMA, UMR 8112 Observatoire de Paris, CNRS et UPMC, Meudon, France Laboratoire Hubert Curien, UMR CNRS 5516, Saint-Etienne, France
M. González
Affiliation:
Instituto de Fusión Nuclear, Universidad Politécnica de Madrid, Madrid, Spain
T. Lanz
Affiliation:
LERMA, UMR 8112 Observatoire de Paris, CNRS et UPMC, Meudon, France Department of Astronomy, University of Maryland, College Park, Maryland
A. Marocchino
Affiliation:
The Blackett Laboratory, Imperial College, London, United Kingdom
M. Kozlova
Affiliation:
Department of X Ray Lasers, Institute of Physics PALS Center, Prague, Czech Republic
B. Rus
Affiliation:
Department of X Ray Lasers, Institute of Physics PALS Center, Prague, Czech Republic
*
Address correspondence and reprint requests to: Chantal Stehlé, Observatoire de Paris, LERMA, 5 Place Jules Janssen, 92195 Meudon, France. E-mail: chantal.stehle@obspm.fr

Abstract

Advances in laser and Z-pinch technology, coupled with the development of plasma diagnostics, and the availability of high-performance computers, have recently stimulated the growth of high-energy density laboratory astrophysics. In particular, a number of experiments have been designed to study radiative shocks and jets with the aim of shedding new light on physical processes linked to the ejection and accretion of mass by newly born stars. Although general scaling laws are powerful tools to link laboratory experiments with astrophysical plasmas, the phenomena modeled are often too complicated for simple scaling to remain relevant. Nevertheless, the experiments can still give important insights into the physics of astrophysical systems and can be used to provide the basic experimental validation of numerical simulations in regimes of interest to astrophysics. We will illustrate the possible links between laboratory experiments, numerical simulations, and astrophysics in the context of stellar jets. First we will discuss the propagation of stellar jets in a cross-moving interstellar medium and the scaling to Z-pinch produced jets. Our second example focuses on slab-jets produced at the Prague Asterix Laser System laser installation and their practical applications to astrophysics. Finally, we illustrate the limitations of scaling for radiative shocks, which are found at the head of the most rapid stellar jets.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bally, J. & Reipurth, B. (2001). Irradiated herbig-haro jets in the orion nebula and near NGC 1333. Astroph. J. 546, 299323.CrossRefGoogle Scholar
Bar-Shalom, A., Shvarts, D., Oreg, J., Goldstein, W.H. & Zigler, A. (1989). Super-transition-arrays-A model for the spectral analysis of hot dense plasma. PRA 40, 31833193.CrossRefGoogle ScholarPubMed
Bieging, J.H., Cohen, M. & Schwartz, P.R. (1984). VLA observations of T Tauri stars. II - A luminosity-limited survey of Taurus-Auriga. Astroph. J. 282, 699708.CrossRefGoogle Scholar
Bouquet, S., Stehlé, C., Koenig, M., Chièze, J.P., Benuzzi-Mounaix, A., Batani, D., Leygnac, S., Fleury, X., Merdji, H., Michaut, C., Thais, F., Grandjouan, N., Hall, T., Henry, E., Malka, V. & Lafon, J.P.J. (2004). Observations of laser driven supercritical radiative shock precursors. Phys. Rev. Let. 92, 5001.CrossRefGoogle ScholarPubMed
Bozier, J.C., Thiell, G., Lebreton, J.P., Azra, S., Decroisette, M. & Schirmann, D. (1986). Experimental-observation of a radiative wave generated in xenon by a laser-driven supercritical shock. Phys. Rev. Let. 57, 1304.CrossRefGoogle ScholarPubMed
Cabrit, S. (2002). Constraints on accreation-ejection structures in young stars. In Proceedings of Star Formation and the Physics of Young Stars (Bouvier, J. & Zahn, J.-P. eds.) Les Ulis Cedex A, France: EDP Sciences. 147182.Google Scholar
Cabrit, S. (2007). The need for MHD collimation and acceleration processes. In Jets from Young Stars, Lecture Notes in Physics. New York: Springer.Google Scholar
Castor, J.I. (2007). Astrophysical radiation dynamics: The prospect for scaling. Astrophys. Space Sci. 307, 207.CrossRefGoogle Scholar
Chittenden, J.P., Lebedev, S.V., Jennings, C.A., Bland, S.N. & Ciardi, A. (2004). X-ray generation mechanisms in three-dimensional simulations of wire array Z-pinches. Plasma Phys. Contr. Fusion 46, B457B476.CrossRefGoogle Scholar
Ciardi, A., Ampleford, D.J., Lebedev, S.V. & Stehlé, C. (2008). Curved Herbig-Haro Jets: simulations and experiments. Astroph. J. 678, 968973.CrossRefGoogle Scholar
Ciardi, A., Lebedev, S.V., Frank, A., Blackman, E.G., Chittenden, J.P., Jennings, C.J., Ampleford, D.J., Bland, S.N., Bott, S.C., Rapley, J., Hall, G.N., Suzuki-Vidal, F.A., Marocchino, A., Lery, T. & Stehle, C. (2007). The evolution of magnetic tower jets in the laboratory. Phys. Plasmas, 14, 056501/10.CrossRefGoogle Scholar
Dalgarno, A. & Mccray, R.A. (1972). Heating and ionization of HI regions. Ann. Rev. Astr. Astroph. 10, 375.CrossRefGoogle Scholar
Foster, J.M., Wilde, B.H., Rosen, P.A., Perry, T.S., Felli, M., Edwards, M.J., Lasinski, B.F., Turner, R.E. & Gittings, M.L. (2002). Supersonic jet and shock interactions. Phys. Plasma 9, 2251.CrossRefGoogle Scholar
Fleury, X., Bouquet, S., Stehlé, C., Koenig, M., Batani, D., Benuzzi-Mounaix, A., Chièze, J.P., Grandjouan, N., Grenier, J., Hall, T., Henry, E., Lafon, J.P.J., Leygnac, S., Malka, V., Marchet, B., Merdji, H., Michaut, C. & Thais, F. (2002). A laser experiment for studying radiative shocks in astrophysics Laser Part. Beams 20, 263.CrossRefGoogle Scholar
González, M., Audit, E. & Huynh, P. (2007). HERACLES: A three dimensional radiation hydrodynamics code. A&A 464, 429435.Google Scholar
González, M., Stehlé, C., Audit, E., Busquet, M., Rus, B., Thais, F., Acef, O., Barroso, P., Bar-Shalom, A., Bauduin, D., Kozlova, M., Lery, T., Madouri, A., Mocek, T. & Polan, J. (2006). Astrophysical radiative shocks from modeling to laboratory experiments. Laser Part. Beams 24, 535545.CrossRefGoogle Scholar
González, M., Audit, E. & Stehlé, C. (2009). 2D numerical study of the radiation influence on shock structure relevant to laboratory astrophysics. A&A 497, 2734.Google Scholar
Hartigan, P. & Raymond, J. (1993). The formation and evolution of shocks in stellar jets from a variable wind. Astroph. J. 409, 705719.CrossRefGoogle Scholar
Hartigan, P. (1994). Low-excitation Herbig-Haro objects. Astron. Soc. Pac. Conf. Proc. 57, 95104.Google Scholar
Hartigan, P., Frank, A., Varniére, P. & Blackman, E.G. (2007). Magnetic fields in stellar jets. Astroph. J. 661, 910.CrossRefGoogle Scholar
Jones, B.F. & Herbig, G.H. (1979). Proper motions of T Tauri variables and other stars associated with the Taurus-Auriga dark clouds. Astron. J. 84, 18721889.CrossRefGoogle Scholar
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Rohlena, K., Skala, J. & Hora, H. (2006). Stable dense plasma jets produced at laser power densities around 1014 W/cm2. Phys. Plasmas 13, 062704/062704–8.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2007). Interferometric investigations of influence of target irradiation on the parameters of laser-produced plasma jet. Laser Part. Beams 25, 425433.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Kalal, M., Martinkova, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2008). PALS laser energy transfer into solid targets and its dependence on the lens focal point position with respect to the target surface. Laser Part. Beams 26, 189196.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Nicolai, P.H., Stenz, C.H., Tikhonchuk, V., Kalal, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J., Klir, D., Kravarik, J., Kubes, P. & Pisarczyk, P. (2009). Investigations of plasma jet interaction with ambient gases by multi-frame interferometric and X-ray pinhole camera systems. Laser Part. Beams 27, 115122.CrossRefGoogle Scholar
Kozlová, M., Rus, B., Mocek, T., Polan, J., Homer, P., Stupka, M., Fajardo, M., De Lazzari, D. & Zeitoun, P. (2007). Development of plasma X-ray amplifiers based on solid targets for the injector-amplifier scheme. In X-Ray Lasers 2006. New York: Springer.Google Scholar
Lebedev, S.V., Ciardi, A., Ampleford, D.J., Bland, S.N., Bott, S.C., Chittenden, J.P., Hall, G.N., Rapley, J., Jennings, C., Sherlock, M., Frank, A. & Blackman, E.G. (2005). Production of radiatively cooled hypersonic plasma jets and links to astrophysical jets Plasma. Phys. Contr. Fusion 47, B465B479.CrossRefGoogle Scholar
Lebedev, S.V., Ampleford, D., Ciardi, A., Bland, S.N., Chittenden, J.P., Haines, M.G., Frank, A., Blackman, E.G. & Cunningham, A. (2004). Jet deflection via crosswinds: Laboratory astrophysical studies. Astroph. J. 616, 988997.CrossRefGoogle Scholar
Lebedev, S.V., Chittenden, J.P., Beg, F.N., Bland, S.N., Ciardi, A., Ampleford, D., Hughes, S., Haines, M.G., Frank, A., Blackman, E.G. & Gardiner, T. (2002). Laboratory astrophysics and collimated stellar outflows: The production of radiatively cooled hypersonic plasma jets. Astroph. J. 564, 113119.CrossRefGoogle Scholar
Logory, L.M., Miller, P.L. & Stry, P.E. (2000). Nova high-speed jet experiment. Astroph. J. Sup. 127, 423.CrossRefGoogle Scholar
Michaut, C., Stehlé, C., Leygnac, S., Lanz, T. & Boireau, L. (2004). Jump conditions in hypersonic shocks. Quantitative effects of ionic excitation and radiation. Eur. Phys. J. D 28, 381392.CrossRefGoogle Scholar
Mundt, R. & Fried, J.W. (1983). Jets from young stars. Astroph. J. 274, L83L86.CrossRefGoogle Scholar
Raga, A.C., De Colle, F., Kajdic, P., Esquivel, A. & Canto, J. (2007). High resolution simulations of a variaable HH jet. Astro & Astrophys. 465, 879885.CrossRefGoogle Scholar
Reighard, A.B., Drake, R.P., Dannenberg, K., Perry, T.S., Robey, H.A., Remington, B.A., Wallace, R.J., Ryutov, D.D., Greenough, J., Knauer, J., Boelhy, T., Bouquet, S., Calder, A., Rosner, R., Fryxell, B., Arnett, D. & Koenig, M. (2005). Collapsing radiative shocks in argon gas on the omega laser. ApSS 298.Google Scholar
Reipurth, B., Raga, A.C. & Heathcote, S. (1992). Structure and kinematics of the HH 111 jet. Astroph. J. 392, 145.CrossRefGoogle Scholar
Reipurth, B., Heathcote, S., Morse, J., Hartigan, P. & Bally, J. (2002). Hubble space telescope images of the HH 34 jet and bow shock: Structure and proper motions. Astron. J. 123, 362.CrossRefGoogle Scholar
Ryutov, D.D., Remington, B.A., Robey, H.F. & Drake, R.P. (2001). Magneto-hydrodynamic scaling: From astrophysics to the laboratory Phys. Plasmas 8, 1804.CrossRefGoogle Scholar
Ryutov, D.D., Drake, R.P., Kane, J., Liang, E., Remington, B.A. & Wood-Wasey, W.M. (1999). Similarity criteria for the laboratory simulation of supernova hydrodynamics. Astroph. J. 518, 821.CrossRefGoogle Scholar
Ryutov, D.D., Drake, R.P. & Remington, B.A. (2000). Criteria for scaled laboratory simulations of astrophysical MHD phenomena. Astroph. J. Supp, 127, 465.CrossRefGoogle Scholar
Salas, L., Cruz-Gonzalez, I. & Porras, A. (1998). S187: SCP 1 (H2): A curved molecular hydrogen outflow. Astroph. J. 500, 853.CrossRefGoogle Scholar
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.CrossRefGoogle Scholar
Shigemori, K., Kodama, R., Farley, D.R., Koase, T., Estabrook, K.G., Remington, B.A., Ryutov, D.D., Ochi, Y., Azechi, H., Stone, J. & Turner, N. (2000). Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets. PR 62, 88388841.Google ScholarPubMed
Snell, R.L., Loren, R.B. & Plambeck, R.L. (1980). Observations of CO in L1551 - Evidence for stellar wind driven shocks. Astroph. J. 239, L17L22.CrossRefGoogle Scholar
Teşileanu, O., Mignone, A. & Massaglia, S. (2008). Simulating radiative astrophysical flows with the PLUTO code: A non-equilibrium multi-species cooling function. A&A 488, 429440.Google Scholar
Zeldovich, Y.B. & Raiser, Y.P. (1966). Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. New York: Academic Press.Google Scholar