Skip to main content Accessibility help

Scaling of ion energies in the relativistic-induced transparency regime

  • D. Jung (a1) (a2), B.J. Albright (a1), L. Yin (a1), D.C. Gautier (a1), B. Dromey (a2), R. Shah (a1), S. Palaniyappan (a1), S. Letzring (a1), H.-C. Wu (a1), T. Shimada (a1), R.P. Johnson (a1), D. Habs (a3), M. Roth (a4), J.C. Fernández (a1) and B.M. Hegelich (a1)...


Experimental data are presented showing maximum carbon C6+ ion energies obtained from nm-scaled targets in the relativistic transparent regime for laser intensities between 9 × 1019 and 2 × 1021 W/cm2. When combined with two-dimensional particle-in-cell simulations, these results show a steep linear scaling for carbon ions with the normalized laser amplitude a0 ( $a_0 \propto \sqrt ( I)$ ). The results are in good agreement with a semi-analytic model that allows one to calculate the optimum thickness and the maximum ion energies as functions of a0 and the laser pulse duration τλ for ion acceleration in the relativistic-induced transparency regime. Following our results, ion energies exceeding 100 MeV/amu may be accessible with currently available laser systems.


Corresponding author

Address correspondence and reprint requests to: D. Jung, Centre for Plasma Physics (CPP), Queen's University Belfast, Belfast BT7 1NN, UK. E-mail:


Hide All
Albright, B.J., Yin, L., Bowers, K.J., Hegelich, B.M., Flippo, K.A., Kwan, T.J.T. & Fernandez, J.C. (2007). Relativistic Buneman instability in the laser breakout afterburner. Phys. Plasmas 140, 094502.
Applied Diamond, Inc. [online]
Batha, S.H., Aragonez, R., Archuleta, F.L., Archuleta, T.N., Benage, J.F., Cobble, J.A., Cowan, J.S., Fatherley, V.E., Flippo, K.A., Gautier, D.C., Gonzales, R.P., Greenfield, S.R., Hegelich, B.M., Hurry, T.R., Johnson, R.P., Kline, J.L., Letzring, S.A., Loomis, E.N., Lopez, F.E., Luo, S.N., Montgomery, D.S., Oertel, J.A., Paisley, D.L., Reid, S.M., Sanchez, P.G., Seifter, A., Shimada, T. & Workman, J.B. (2008). Trident high-energy-density facility experimental capabilities and diagnostics. Rev. Sci. Instrum. 790, 10F305. doi: 10.1063/1.2972020.
Borghesi, M., Mackinnon, A.J., Campbell, D.H., Hicks, D.G., Kar, S., Patel, P.K., Price, D., Romagnani, L., Schiavi, A. & Willi, O. (2004). Multi-MeV proton source investigations in ultraintense laser–foil interactions. Phys. Rev. Lett. 92, 055003. doi: 10.1103/PhysRevLett.92.055003.
Bowers, K.J., Albright, B.J., Yin, L., Bergen, B. & Kwan, T.J.T. (2008). Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation. Phys. Plasmas 150, 055703. doi: 10.1063/1.2840133.
Buneman, O. (1959). Dissipation of currents in ionized media. Phys. Rev. 115, 503517. doi: 10.1103/PhysRev.115.503.
Cowan, T.E., Fuchs, J., Ruhl, H., Kemp, A., Audebert, P., Roth, M., Stephens, R., Barton, I., Blazevic, A., Brambrink, E., Cobble, J., Fernández, J., Gauthier, J.-C., Geissel, M., Hegelich, M., Kaae, J., Karsch, S., Le Sage, G.P., Letzring, S., Manclossi, M., Meyroneinc, S., Newkirk, A., Pépin, H. & Renard-LeGalloudec, N. (2004). Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 920, 204801. doi: 10.1103/PhysRevLett.92.204801.
Dollar, F., Zulick, C., Thomas, A.G.R., Chvykov, V., Davis, J., Kalinchenko, G., Matsuoka, T., McGuffey, C., Petrov, G.M., Willingale, L., Yanovsky, V., Maksimchuk, A. & Krushelnick, K. (2012). Finite spot effects on radiation pressure acceleration from intense high-contrast laser interactions with thin targets. Phys. Rev. Lett. 108, 175005. doi: 10.1103/PhysRevLett.108.175005.
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 920, 175003. doi: 10.1103/PhysRevLett.92.175003.
Esirkepov, T., Yamagiwa, M. & Tajima, T. (2006). Laser ion-acceleration scaling laws seen in multiparametric particle-in-cell simulations. Phys. Rev. Lett. 96, 105001. doi: 10.1103/PhysRevLett.96.105001.
Fleischer, R.L., Price, P.B. & Walker, R.M. (1965). Ion explosion spike mechanism for formation of charged-particle tracks in solids. J. Appl. Phys. 360, 36453652. doi: 10.1063/1.1703059.
Fuchs, J., Antici, P., d'Humieres, E., Lefebvre, E., Borghesi, M., Brambrink, E., Cecchetti, C.A., Kaluza, M., Malka, V., Manclossi, M., Meyroneinc, S., Mora, P., Schreiber, J., Toncian, T., Pepin, H. & Audebert, P. (2006). Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys. 20, 4854. doi: 10.1038/nphys199.
Gaillard, S.A., Kluge, T., Flippo, K.A., Bussmann, M., Gall, B., Lockard, T., Geissel, M., Offermann, D.T., Schollmeier, M., Sentoku, Y. & Cowan, T.E. (2011). Increased laser-accelerated proton energies via direct laser-light-pressure acceleration of electrons in microcone targets. Phys. Plasmas 180, 056710. ISSN 1070664X. doi: 10.1063/1.3575624.
Hatchett, S.P., Brown, C.G., Cowan, T.E., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, R.W., Mackinnon, A.J., Pennington, D.M., Perry, M.D., Phillips, T.W., Roth, M., Sangster, T.C., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C. & Yasuike, K. (2000). Electron, photon, and ion beams from the relativistic interaction of petawatt laser pulses with solid targets. Phys. Plasmas 70, 20762082. doi: 10.1063/1.874030.
Hegelich, B.M., Albright, B.J., Cobble, J., Flippo, K., Letzring, S., Paffett, M., Ruhl, H., Schreiber, J., Schulze, R.K. & Fernandez, J.C. (2006). Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 4390, 441444. doi: 10.1038/nature04400.
Hegelich, B.M., Jung, D., Albright, B.J., Cheung, M., Dromey, B., Gautier, D.C., Hamilton, C., Letzring, S., Munchhausen, R., Palaniyappan, S., Shah, R., Wu, H.-C., Yin, L. & Fernández, J.C. (2013). 160 MeV laser-accelerated protons from CH2 nano-targets for proton cancer therapy. ArXiv e-prints.
Hegelich, B.M., Jung, D., Albright, B.J., Fernandez, J.C., Gautier, D.C., Huang, C., Kwan, T.J., Letzring, S., Palaniyappan, S., Shah, R.C., Wu, H.-C., Yin, L., Henig, A., Hrlein, R., Kiefer, D., Schreiber, J., Yan, X.Q., Tajima, T., Habs, D., Dromey, B. & Honrubia, J.J. (2011). Experimental demonstration of particle energy, conversion efficiency and spectral shape required for ion-based fast ignition. Nucl. Fusion 510, 083011. doi: 10.1088/0029-5515/51/8/083011.
Hegelich, M., Karsch, S., Pretzler, G., Habs, D., Witte, K., Guenther, W., Allen, M., Blazevic, A., Fuchs, J., Gauthier, J.C., Geissel, M., Audebert, P., Cowan, T. & Roth, M. (2002). MeV ion jets from short-pulse–laser interaction with thin foils. Phys. Rev. Lett. 890, 085002. doi: 10.1103/PhysRevLett.89.085002.
Henig, A., Kiefer, D., Markey, K., Gautier, D.C., Flippo, K.A., Letzring, S., Johnson, R.P., Shimada, T., Yin, L., Albright, B.J., Bowers, K.J., Fernández, J.C., Rykovanov, S.G., Wu, H.-C., Zepf, M., Jung, D., Liechtenstein, V.Kh., Schreiber, J., Habs, D. & Hegelich, B.M. (2009 a). Enhanced laser-driven ion acceleration in the relativistic transparency regime. Phys. Rev. Lett. 1030, 045002. doi: 10.1103/PhysRevLett.103.045002.
Henig, A., Steinke, S., Schnürer, M., Sokollik, T., Hörlein, R., Kiefer, D., Jung, D., Schreiber, J., Hegelich, B.M., Yan, X.Q., Meyer-ter Vehn, J., Tajima, T., Nickles, P.V., Sandner, W. & Habs, D. (2009 b). Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. Phys. Rev. Lett. 1030, 245003. doi: 10.1103/PhysRevLett.103.245003.
Jung, D., Albright, B.J., Yin, L., Gautier, D.C., Shah, R., Palaniyappan, S., Letzring, S., Dromey, B., Wu, H.-C., Shimada, T., Johnson, R.P., Roth, M., Fernandez, J.C., Habs, D. & Hegelich, B.M. (2013 a). Beam profiles of proton and carbon ions in the relativistic transparency regime. New J. Phys. 150, 123035. doi: 10.1088/1367-2630/15/12/123035.
Jung, D., Falk, K., Guler, N., Deppert, O., Devlin, M., Favalli, A., Fernandez, J.C., Gautier, D.C., Geissel, M., Haight, R., Hamilton, C.E., Hegelich, B.M., Johnson, R.P., Merrill, F., Schaumann, G., Schoenberg, K., Schollmeier, M., Shimada, T., Taddeucci, T., Tybo, J.L., Wender, S.A., Wilde, C.H., Wurden, G.A. & Roth, M. (2013 b). Characterization of a novel, short pulse laser-driven neutron source. Phys. Plasmas 200, 056706. doi: 10.1063/1.4804640.
Jung, D., Hrlein, R., Gautier, D.C., Letzring, S., Kiefer, D., Allinger, K., Albright, B.J., Shah, R., Palaniyappan, S., Yin, L., Fernndez, J.C., Habs, D. & Hegelich, B.M. (2011). A novel high resolution ion wide angle spectrometer. Rev. Sci. Instrum. 820, 043301. ISSN 00346748. doi: 10.1063/1.3575581.
Jung, D., Senje, L., McCormack, O., Yin, L., Albright, B.J., Letzring, S., Gautier, D.C., Dromey, B., Toncian, T., Fernandez, J.C., Zepf, M. & Hegelich, B.M. (2015). On the analysis of inhomogeneous magnetic field spectrometer for laser-driven ion acceleration. Rev. Sci. Instrum. 860, 033303. doi: 10.1063/1.4914845.
Jung, D., Yin, L., Albright, B.J., Gautier, D.C., Letzring, S., Dromey, B., Yeung, M., Hörlein, R., Shah, R., Palaniyappan, S., Allinger, K., Schreiber, J., Bowers, K.J., Wu, H-C., Fernandez, J.C., Habs, D. & Hegelich, B.M. (2013 c). Efficient carbon ion beam generation from laser-driven volume acceleration. New J. Phys. 150, 023007. doi: 10.1088/1367-2630/15/2/023007.
Jung, D., Yin, L., Gautier, D.C., Wu, H.-C., Letzring, S., Dromey, B., Shah, R., Palaniyappan, S., Shimada, T., Johnson, R.P., Schreiber, J., Habs, D., Fernández, J.C., Hegelich, B.M. & Albright, B.J. (2013 d). Laser-driven 1 GeV carbon ions from preheated diamond targets in the break-out afterburner regime. Phys. Plasmas 200, 083103. doi: 10.1063/1.4817287.
Kar, S., Kakolee, K.F., Qiao, B., Macchi, A., Cerchez, M., Doria, D., Geissler, M., McKenna, P., Neely, D., Osterholz, J., Prasad, R., Quinn, K., Ramakrishna, B., Sarri, G., Willi, O., Yuan, X.Y., Zepf, M. & Borghesi, M. (2012). Ion acceleration in multispecies targets driven by intense laser radiation pressure. Phys. Rev. Lett. 109, 185006. doi: 10.1103/PhysRevLett.109.185006.
Klimo, O., Psikal, J., Limpouch, J. & Tikhonchuk, V.T. (2008). Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses. Phys. Rev. ST Accel. Beams 110, 031301. doi: 10.1103/PhysRevSTAB.11.031301.
Macchi, A., Veghini, S., Liseykina, T.V. & Pegoraro, F. (2010). Radiation pressure acceleration of ultrathin foils. New J. Phys. 120, 045013. doi: 10.1088/1367-2630/12/4/045013.
Macchi, A., Veghini, S. & Pegoraro, F. (2009). “Light sail” acceleration reexamined. Phys. Rev. Lett. 1030, 085003. doi: 10.1103/PhysRevLett.103.085003.
Mako, F. & Tajima, T. (1984). Collective ion acceleration by a reflexing electron beam: Model and scaling. Phys. Fluids 270, 18151820. doi: 10.1063/1.864794.
Mancic, A., Fuchs, J., Antici, P., Gaillard, S.A. & Audebert, P. (2008). Absolute calibration of photostimulable image plate detectors used as (0.5-20 MeV) high-energy proton detectors. Rev. Sci. Instrum. 790, 073301. doi: 10.1063/1.2949388.
Naumova, N., Schlegel, T., Tikhonchuk, V.T., Labaune, C., Sokolov, I.V. & Mourou, G. (2009). Hole boring in a dt pellet and fast-ion ignition with ultraintense laser pulses. Phys. Rev. Lett. 102, 025002. doi: 10.1103/PhysRevLett.102.025002.
Palaniyappan, S., Hegelich, B.M., Wu, H.-C., Jung, D., Gautier, D.C., Yin, L., Albright, B.J., Johnson, R.P., Shimada, T., Letzring, S., Offermann, D.T., Ren, J., Huang, C., Hörlein, R., Dromey, B., Fernandez, J.C. & Shah, R.C. (2012). Dynamics of relativistic transparency and optical shuttering in expanding overdense plasmas. Nat. Phys. 8, 763769. doi: 10.1038/nphys2390.
Paterson, I.J., Clarke, R.J., Woolsey, N.C. & Gregori, G. (2008). Image plate response for conditions relevant to laser–plasma interaction experiments. Meas. Sci. Technol. 190, 095301. doi: 10.1088/0957-0233/19/9/095301.
Reitzel, K.J. & Morales, G.J. (1998). Dynamics of narrow electron streams in magnetized plasmas. Phys. Plasmas 50, 38063815. doi: 10.1063/1.873099.
Robinson, A.P.L., Gibbon, P., Zepf, M., Kar, S., Evans, R.G. & Bellei, C. (2009). Relativistically correct hole-boring and ion acceleration by circularly polarized laser pulses. Plasma Phys. Controll. Fusion 510, 024004. doi: 10.1088/0741-3335/51/2/024004.
Robson, L., Simpson, P.T., Clarke, R.J., Ledingham, K.W.D., Lindau, F., Lundh, O., McCanny, T., Mora, P., Neely, D., Wahlstrom, C.-G., Zepf, M. & McKenna, P. (2007). Scaling of proton acceleration driven by petawatt–laser–plasma interactions. Nat. Phys. 30, 5862. doi: 10.1038/nphys476.
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 860, 436439. doi: 10.1103/PhysRevLett.86.436.
Roth, M., Jung, D., Falk, K., Guler, N., Deppert, O., Devlin, M., Favalli, A., Fernandez, J., Gautier, D., Geissel, M., Haight, R., Hamilton, C.E., Hegelich, B.M., Johnson, R.P., Merrill, F., Schaumann, G., Schoenberg, K., Schollmeier, M., Shimada, T., Taddeucci, T., Tybo, J.L., Wagner, F., Wender, S.A., Wilde, C.H. & Wurden, G.A. (2013). Bright laser-driven neutron source based on the relativistic transparency of solids. Phys. Rev. Lett. 110, 044802. doi: 10.1103/PhysRevLett.110.044802.
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., MacKinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt–laser irradiation of solids. Phys. Rev. Lett. 850, 29452948. doi: 10.1103/PhysRevLett.85.2945.
Steinke, S., Henig, A., Schnrer, M., Sokollik, T., Nickles, P.V., Jung, D., Kiefer, D., Hrlein, R., Schreiber, J., Tajima, T., Yan, X.Q., Hegelich, M., Meyer-ter Vehn, J., Sandner, W. & Habs, D. (2010). Efficient ion acceleration by collective laser-driven electron dynamics with ultra-thin foil targets. Laser Part. Beams 280, 215221. doi: 10.1017/S0263034610000157.
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 10, 16261634. doi: 10.1063/1.870664.
Tajima, T., Habs, D. & Yan, X. (2009). Laser acceleration of ions for radiation therapy. Rev. Accel. Sci. Tech. 2, 201228. doi: 10.1142/S1793626809000296.
Vshivkov, V.A., Naumova, N.M., Pegoraro, F. & Bulanov, S.V. (1998). Nonlinear electrodynamics of the interaction of ultra-intense laser pulses with a thin foil. Phys. Plasmas 50, 27272741. doi: 10.1063/1.872961.
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 80, 542549. ISSN 1070664X. doi: 10.1063/1.1333697.
Yan, X., Tajima, T., Hegelich, M., Yin, L. & Habs, D. (2010). Theory of laser ion acceleration from a foil target of nanometer thickness. Appl. Phys. B: Lasers Opt. 98, 711721. ISSN 0946-2171. doi: 10.1007/s00340-009-3707-5.
Yan, X.Q., Lin, C., Sheng, Z.M., Guo, Z.Y., Liu, B.C., Lu, Y.R., Fang, J.X. & Chen, J.E. (2008). Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime. Phys. Rev. Lett. 1000, 135003. doi: 10.1103/PhysRevLett.100.135003.
Yin, L., Albright, B.J., Bowers, K.J., Jung, D., Fernández, J.C. & Hegelich, B.M. (2011 a). Three-dimensional dynamics of breakout afterburner ion acceleration using high-contrast short-pulse laser and nanoscale targets. Phys. Rev. Lett. 1070, 045003. doi: 10.1103/PhysRevLett.107.045003.
Yin, L., Albright, B.J., Hegelich, B.M., Bowers, K.J., Flippo, K.A., Kwan, T.J.T. & Fernandez, J.C. (2007). Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets. Phys. Plasmas 140, 056706. doi: 10.1063/1.2436857.
Yin, L., Albright, B.J., Jung, D., Shah, R.C., Palaniyappan, S., Bowers, K.J., Henig, A., Fernndez, J.C. & Hegelich, B.M. (2011 b). Break-out afterburner ion acceleration in the longer laser pulse length regime. Phys. Plasmas 180, 063103. doi: 10.1063/1.3596555.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed