Skip to main content Accessibility help
×
Home

Recent experiments on the hydrodynamics of laser-produced plasmas conducted at the PALS laboratory

  • D. BATANI (a1), R. DEZULIAN (a1), R. REDAELLI (a1), R. BENOCCI (a1), H. STABILE (a1), F. CANOVA (a1), T. DESAI (a1), G. LUCCHINI (a1), E. KROUSKY (a2), K. MASEK (a2), M. PFEIFER (a2), J. SKALA (a2), R. DUDZAK (a2), B. RUS (a2), J. ULLSCHMIED (a2), V. MALKA (a3), J. FAURE (a3), M. KOENIG (a4), J. LIMPOUCH (a5), W. NAZAROV (a6), D. PEPLER (a7), K. NAGAI (a8), T. NORIMATSU (a8) and H. NISHIMURA (a8)...

Abstract

We present a series of experimental results, and their interpretation, connected to various aspects of the hydrodynamics of laser produced plasmas. Experiments were performed using the Prague PALS iodine laser working at 0.44 μm wavelength and irradiances up to a few 1014 W/cm2. By adopting large focal spots and smoothed laser beams, the lateral energy transport and lateral expansion have been avoided. Therefore we could reach a quasi one-dimensional regime for which experimental results can be more easily and properly compared to available analytical models.

Copyright

Corresponding author

Address correspondence and reprint requests to: Dimitri Batani, Dipartimento di Fisica “G. Occhialini,” University of Milano Bicocca, Milan, Italy. E-mail: batani@mib.infn.it

References

Hide All

REFERENCES

Ancilotto, F., Chiarotti, G.L., Scandolo, S. & Tosatti, E. (1997). dissociation of methane into hydrocarbons at extreme (planetary) pressure and temperature. Science 275, 12881290.
Atzeni, S. (1986). 2-D Lagrangian studies of symmetry and stability of laser fusion targets. Comp. Phys. Commun. 43, 107124.
Barborini, E., Piseri, P. & Milani, P. (1999). A pulsed microplasma source of high intensity supersonic carbon cluster beams. J. Phys. A 32, L105L109.
Barborini, E., Piseri, P., Podesta, A. & Milani, P. (2000). Cluster beam microfabrication of patterns of three-dimensional nanostructured objects. Appl. Phys. Lett. 77, 10591061.
Batani, D., Balducci, A., Nazarov, W., Löwer, T., Hall, T., Koenig, M., Faral, B., Benuzzi, A. & Temporal, M. (2001). Use of low-density foams as pressure amplifiers in equation-of-state experiments with laser-driven shock waves. Phys. Rev. E 63, 046410420.
Batani, D., Balducci, A., Beretta, D., Bernardinello, A., Löwer, T., Koenig, M., Benuzzi, A., Faral, B. & Hall, T. (2000b). Equation of state data for gold in the pressure range <10 TPa. Phys. Rev. B 61, 92879294.
Batani, D., Barbanotti, S., Canova, F., Dezulian, R., Stabile, H., Ravasio, A., Lucchini, G., Ullschmied, J., Krousky, E., Skala, J., Juha, L., Kralikova, B., Pfeifer, M., Kadlec, C., Mocek, T., Prag, A., Nishimura, H. & Ochi, Y. (2004a). Laser driven shock experiments at PALS. Czech. J. Phys. 54, 431443.
Batani, D., Bleu, C. & Löwer, T. (2002a). Design, simulation and application of phase plates. Euro. Phys. J. D 19, 231243.
Batani, D., Morelli, A., Tomasini, M., Benuzzi-Mounaix, A., Philippe, F., Koenig, M., Marchet, B., Masclet, I., Rabec, M., Reverdin, Ch., Cauble, R., Celliers, P., Collins, G., Da Silva, L., Hall, T., Moret, M., Sacchi, B., Baclet, P. & B. Cathala, B. (2002b). Equation of state data for iron at pressures beyond 10 Mbar. Phys. Rev. Lett. 88, 235502505.
Batani, D., Nazarov, W., Hall, T., Löwer, T., Koenig, M., Faral, B., Benuzzi-Mounaix, A. & Grandjouan, N. (2000a). Foam-induced smoothing studied through laser-driven shock waves. Phys. Rev. E 62, 85738582.
Batani, D., Stabile, H., Ravasio, A., Desai, T., Lucchini, G., Desai, T., Ullschmied, J., Krousky, E., Juha, L., Skala, J., Kralikova, B., Pfeifer, M., Kadlec, C., Mocek, T., Präg, A., Nishimura, H. & Ochi, Y. (2003a). Ablation pressure scaling at short laser wavelength. Phys. Rev. E 68, 067403406.
Batani, D., Stabile, H., Tomasini, M., Lucchini, G., Ravasio, A., Koenig, M., Benuzzi-Mounaix, A., Nishimura, H., Ochi, Y., Ullschmied, J., Skala, J., Kralikova, B., Pfeifer, M., Kadlec, Ch., Mocek, T., Präg, A., Hall, T., Milani, P., Barborini, E. & Piseri, P. (2004b). Huguenot data for carbon at megabar pressures. Phys. Rev. Lett. 92, 065503.
Batani, D., Strati, F., Telaro, B., Löwer, T., Hall, T., Benuzzi-Mounaix, A. & Koenig, M. (2003b). Production of high quality shocks for equation of state experiments. Euro. Phys. J D 23, 99107.
Benedetti, L.R., Nguyen, J.H., Caldwell, W.A., Liu, H., Kruger, M. & Jeanloz, R. (1999). Dissociation of CH4 at high pressures and temperatures: Diamond formation in giant planet interiors? Science 286, 100102.
Benuzzi, A., Koenig, M., Faral, B., Krishnan, J., Pisani, F., Batani, D., Bossi, S., Beretta, D., Hall, T., Ellwi, S., Hüller, S., Honrubia, J. & Grandjouan, N. (1998). Preheating study by reflectivity measurements in laser-driven shocks. Phys. Plasmas 5, 24102420.
Benuzzi-Mounaix, A., Koenig, M., Boudenne, J.M., Hall, T.A., Batani, D., Scianitti, F., Masini, A. & DiSanto, D. (1999). Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments. Phys. Rev. E 60, R2488R2491.
Bundy, F.P. (1963). Direct conversion of graphite to diamond in static pressure apparatus. J. Chem. Physics 38, 631643.
Bundy, F.P. (1989). Pressure-temperature phase diagram of elemental carbon. Phys. A 156, 169178.
Bundy, F.P., Strong, H.M. & Wentorf, R.H. (1973). Methods and mechanisms of synthetic diamond growth. In Chemistry and Physics of Carbon (Thrower, P.A., Ed.). New York: Decker.
Caruso, A. & Gratton, R. (1968). Some properties of the plasmas produced by irradiating light solids by laser pulses. Plasma Phys. 10, 867877.
Cavalleri, A., Sokolowski-Tinten, K., von der Linde, D., Spagnolatti, I., Bernasconi, M., Benedek, G., Podestà, A. & Milani, P. (2002). Generation of the low-density liquid phase of carbon by non-thermal melting of fullerene. Europhys. Lett. 57, 281.
Chizhkov, M.N., Karlykhanov, N.G., Lykov, V.A., Shushlebin, A.N., Sokolov, L. & Timakova, M.S. (2005). Computational optimization of indirect-driven targets for ignition on the Iskra-6 laser facility. Laser Part. Beams 23, 261265.
Ciardi, A., Lebedev, S.V., Chittenden, J.P. & Bland, S.N. (2002). Modeling of supersonic jet formation in conical wire array Z-pinches. Laser Part. Beams 20, 255261.
Connerney, J.E.P., Acuna, M.H. & Ness, N.F. (1987). The magnetic field of Uranus. J. Geophys. Rev. 92, 15329.
Desai, T., Dezulian, R. & Batani, D. (2007). Radiation effects on shock propagation in Aluminum target relevant to EOS measurements. Laser Part. Beams 25, 2330.
Desselberger, M., Jones, M.W., Edwards, J., Dunne, M. & Willi. O. (1995). Use of X-ray preheated foam layers to reduce beam structure imprint in laser-driven targets. Phys. Rev. Lett. 74, 29612964.
Dezulian, R., Canova, F., Barbanotti, S., Orsenigo, F., Redaelli, R., Vinci, T., Lucchini, G., Batani, D., Rus, B., Polan, J., Kozlová, M., Stupka, M., Praeg, A.R., Homer, P., Havlicek, T., Soukup, M., Krousky, E., Skala, J., Dudzak, R., Pfeifer, M., Nishimura, H., Nagai, K., Ito, F., Norimatsu, T., Kilpio, A., Shashkov, E., Stuchebrukhov, I., Vovchenko, V., Chernomyrdin, V. & Krasuyk, I. (2006). Huguenot Data of Plastic Foams obtained from Laser-Driven Shocks. Phys. Rev. E 73, 047401404.
Drake, R.P. (2005). Hydrodynamic instabilities in astrophysics and in laboratory high energy–density systems. Plasma Phys. Contr. Fusion 47, B419B440.
Drakin, V.P. & Pavlovskii, M.N. (1966). Concerning the metallic phase of carbon (Ceylon and artificial graphite behavior under very high pressure, examining problem of metallic phase of carbon). JETP Lett 4, 116118.
Dunne, M., Borghesi, M., Iwase, A., Jones, M.W., Taylor, R., Willi, O., Gibson, R., Goldman, S.R., Mack, J. & Watt, R.G. (1995). Evaluation of a foam buffer target design for spatially uniform ablation of laser-irradiated plasmas. Phys. Rev. Lett. 75, 38583861.
Eidmann, K., Bar-Shalom, A., Saemann, A. & Winhart, G. (1998). Measurement of the extreme UV opacity of a hot dense gold plasma. Europhys. Lett. 44, 459464.
Eliezer, S., Ghatak, A. & Hora, H. (1986). Equation of State: Theory and Applications. Cambridge, UK: Cambridge University Press.
Fabbro, R., Faral, B., Virmont, J., Cottet, F., Romain, J.P. & Pépin, H. (1985). Experimental study of ablation pressures and target velocities obtained in 0.26 μm wavelength laser experiments in planar geometry. Phys. Fluids 28, 34143423.
Fabbro, R., Fabre, E., Amiranoff, F., Garban-Labaune, C., Virmont, J., Weinfeld, M. & Max, C.E. (1982). Laser-wavelength dependence of mass-ablation rate and heat-flux inhibition in laser-produced plasmas. Phys. Rev. A 26, 22892292.
Fahy, S. & Louie, S.G. (1987). High-pressure structural and electronic properties of carbon. Phys. Rev. B 36, 33733385.
Fincke, J.R., Lanier, N.E., Batha, S.H., Hueckstaedt, R.M., Magelssen, G.R., Rothman, S.D., Parker, K.W. & Horsfield, C. (2005). Effect of convergence on growth of the Richtmyer-Meshkov instability. Laser Part. Beams 23, 2125.
Fleury, X., Bouquet, S., Stehle, C., Koenig, M., Batani, D., Benuzzi-Mounaix, A., Chieze, J.P., N.Grandjouan, Grenier, J., Hall, T., Enry, E., Lafon, J.P., Leygnac, S., Malka, V., Marchet, B., Merdij, H., Michaut, C., &Thais, F. (2002). A laser experiment for studying radiative shocks in astrophysics. Laser Part. Beams 20, 263268.
Garban-Labaune, C., Fabre, E., Max, C., Amiranoff, F., Fabbro, R., Virmont, J. & Mead, W.C. (1985). Experimental results and theoretical analysis of the effect of wavelength on absorption and hot-electron generation in laser-plasma interaction. Phys. Fluids 28, 25802590.
Grumbach, M.P. & Martin, R.M. (1996). Phase diagram of carbon at high pressures and temperatures. Phys. Rev. B 54, 1573015741.
Guillot, T. (1999). Interiors of giant planets inside and outside the solar system. Science 286, 7277.
Gupta, Y.M. & Sharma, S.M. (1997). Shocking matter to extreme conditions. Science 277, 909910.
Gus'Kov, SY. (2005). Thermonuclear gain and parameters of fast ignition ICF-targets. Laser Part. Beams 23, 255260.
Gus'Kov, S.Y., Gromov, A.I., Merkul'ev, Yu.A., Rozanov, V.B., Nikishin, V., Tishkin, V.F., Zmitrenko, N.V., Gavrilov, V.V., Gol'tsov, A.A., Kondrashov, V.N., Kovalsky, N.V., Pergament, M.I., Garanin, S.G., Kirillov, G.A., Sukharev, S.A., Caruso, A. & Strangio, C. (2000). Nonequilibrium laser-produced plasma of volume-structured media and ICF applications. Laser Part. Beams 18, 110.
Gust, W.H. (1980). Phase transition and shock-compression parameters to 120 GPa for three types of graphite and for amorphous carbon. Phys. Rev. B 22, 47444756.
Hall, T., Batani, D., Nazarov, W., Koenig, M. & Benuzzi, A. (2002). Recent advances in laser–plasma experiments using foams. Laser Part. Beams 20, 303316.
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.
Hora, H. (2006). Smoothing and stochastic pulsation at high power laser-plasma interaction. Laser Part. Beams 24, 455463.
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182.
Jungwirth, K., Cejnarova, A., Juha, L., Kralikova, B., Krasa, J., Krousky, E., Krupickova, P., Laska, L., Masek, K., Mocek, T., Pfeifer, M., Präg, A., Renner, O., Rohlena, K., Rus, B., Skala, J., Straka, P. & Ullschmied, J. (2001). The Prague Asterix Laser System. Phys. Plasmas 8, 24952501.
Kato, Y., Mima, K., Miyanaga, N., Arinaga, S., Kitagawa, Y., Nakatsuka, M. & Yamanaka, C. (1984). Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys. Rev. Lett. 53, 10571060.
Key, M.H., Rumsby, P.T., Evans, R.G., Lewis, C.L.S., Ward, J.M. & Cooke, R.L. (1980). Study of Ablatively Imploded Spherical Shells. Phys. Rev. Lett. 45, 18011804.
Key, M.H., Toner, W.T., Goldsack, T.J., Kilkenny, J.D., Veats, S.A., Cunningham, P.F. & Lewis, C.L.S. (1983). A study of ablation by laser irradiation of plane targets at wavelengths 1.05, 0.53, and 0.35 μm. Phys. Fluids 26, 20112026.
Kilkenny, J.D., Alexander, N.B., Nikroo, A., Steinman, D.A., Nobile, A., Bernat, T., Cook, R., Letts, S., Takagi, M. & Harding, D. (2005). Laser targets compensate for limitations in inertial confinement fusion drivers. Laser Part. Beams 23, 475482.
Koenig, M., Benuzzi, A., Faral, B., Batani, D., Muller, L., Torsiello, F., Hall, T., Grandjouan, N. & Nazarov, W. (2000). EOS data for CH foams using smoothed laser beams. Astro. J. 127, 385.
Koenig, M., Benuzzi, A., Philippe, F., Batani, D., Hall, T., Grandjouan, N. & Nazarov, W. (1999a). Equation of state data experiments for plastic foams using smoothed laser beams. Phys. Plasmas 6, 32963301.
Koenig, M., Benuzzi-Mounaix, A., Batani, D., Hall, T. & Nazarov, W. (2005b). Shock velocity and temperature measurements of plastic foams compressed by smoothed laser beams. Phys. Plasmas 12, 012706711.
Koenig, M., Benuzzi-Mounaix, A., Philippe, F., Faral, B., Batani, D., Hall, T.A., Grandjouan, N., Nazarov, W., Chieze, J.P. & Teyssier, R. (1999b). Laser driven shock wave acceleration experiments using plastic foams. Appl. Phys. Lett. 75, 30263028.
Koenig, M., Faral, B., Boudenne, J.M., Batani, D., Benuzzi, A., Bossi, S., Rémond, C., Perrine, J.P., Temporal, M. & Atzeni, S. (1995). Relative consistency of equations of state by laser driven shock waves. Phys. Rev. Lett. 74, 22602263.
Koenig, M., Faral, B., Boudenne, J.M., Batani, D., Benuzzi, A. & Bossi, S. (1994). Optical smoothing techniques for shock wave generation in laser-produced plasmas. Phys. Rev. E 50, R3314R3317.
Koenig, M., Fabre, E., Malka, V., Michard, A., Hammerling, P., Batani, D., Boudenne, J.M., Garconnet, J.P. & Fews, P. (1992). Recent results on implosions directly driven at lambda = 0.26-m laser wavelength. Laser Part. Beams 10, 573.
Koenig, M., Vinci, T., Benuzzi-Monnaix, A., Lepape, S., Ozaki, N., Bouquet, S., Boireau, L., Leygnac, S., Michaut, C., Stehle, C., Chieze, J.P., Batani, D., Hall, T., Tanaka, K. & Yoshida, M. (2005a). Radiative shock experiments at LULI. Astrophys. Space Sci. 298, 6974.
Koenig, M., Vinci, T., Benuzzi-Mounaix, A., Ozaki, N., Ravasio, A., Boireau, L., Michaut, C., Bouquet, S., Atzeni, S., Schiavi, A., Peyrusse, O., Batani, D., Drake, R.P. & Reighard, A.B. (2006). Radiative shocks: An opportunity to study laboratory astrophysics. Phys. Plasmas 13, 056504.
Koresheva, E.R., Osipov, I.E. & Aleksandrova, I.V. (2005). Free standing target technologies for inertial fusion energy: Target fabrication, characterization, and delivery. Laser Part. Beams 23, 563571.
Lebo, I.G., Yu, A.M., Tishkin, V.F. & Zvorykin, V.D. (1999). Analysis and 2D numerical modeling of burn through of metallic foil experiments using power KrF and Nd lasers Laser Part. Beams 17, 753758.
Limpouch, J., Demchenko, N.N., Gus'Kov, S.Y., Gromov, A.I., Kalal, M., Kasperczuk, A., Kondrashov, V.N., Krousky, E., Masek, K., Pfeifer, M., Pisarczyk, P., Pisarczyk, T., Rohlena, K., Rozanov, V.B., Sinor, M. & Ullschmied, J. (2005). Laser interactions with low-density plastic foams. Laser Part. Beams 23, 321325.
Limpouch, J., Demchenko, N.N., Gus'Kov, S.Y., Kálal, M., Kasperczuk, A., Kondrashov, V.N., Krouski, E., Masek, K., Pisarczyk, P., Pisarczyk, T. & Rozanov, V.B. (2004). Laser interactions with plastic foam—metallic foil layered targets. Plasma Phys. Contr. Fusion 46, 18311841.
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.
Malka, V., Faure, F., Huller, S., Tikhonchuk, V.T., Weber, S. & Amiranoff, F. (2003). Enhanced spatiotemporal laser-beam smoothing in gas-jet plasmas. Phys. Rev. Lett. 90, 075002.
Mao, H.K. & Bell, P.M. (1978). High-pressure physics: Sustained static generation of 1.36 to 1.72 Megabars. Science 200, 11451147.
Mao, H.K. & Bell, P.M. (1979). Observations of hydrogen at room temperature (25°C) and high pressure (to 500 Kilobars). Science 203, 10041006.
Mao, H.K. & Hemley, R.J. (1991). Optical transitions in diamond at ultrahigh pressures. Nature 351, 721724.
Marsh, S.P. (1980). LASL Shock Huguenot Data, pp. 2851. Berkeley, CA: University of California, Berkeley, 2851.
Meyer, B. & Thiell, G. (1984). Experimental scaling laws for ablation parameters in plane target–laser interaction with 1.06 μm and 0.35 μm laser wavelengths. Phys. Fluids 27, 302311.
Mora, P. (1982). Theoretical model of absorption of laser light by a plasma. Phys. Fluids 25, 10511056.
More, R.M., Warren, K.H., Young, D.A. & Zimmerman, G.B. (1988). A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31, 30593078.
Nagai, K., Cho, B.-R., Hashishin, Y., Norimatsu, T. & Yamanaka, T. (2002a). Microstructures of ultralow-density foam plastics obtained by altering the coagulant alcohol. Jp. J. Appl. Phys. 41, L431L433.
Nagai, K., Norimatsu, T., Yamanaka, T., Nishibe, T., Ozaki, N., Takamatsu, K., Ono, T., Nakano, M. & Tanaka, K.A. (2006b). Single molecular membrane glue technique for laser driven shock experiments. Jp. J. Appl. Phys. 41, L1184L1186.
Nagai, K., Takayoshi, N. & Yasukazu, I. (2004). Control of micro- and nano-structure in ultra low-density hydrocarbon foam. Fusion Sci. Technol. 45, 7983.
Nellis, W.J., Hamilton, D.C., Holmes, N.C., Radousky, H.B., Ree, F.H., Mitchell, A.C. & Nicol, M. (2001a). Nature of the interior of Uranus based on studies of planetary ices at high dynamic pressure. Science 240, 779781.
Nellis, W.J., Mitchell, A.C. & McMahan, A.K. (2001b). Carbon at pressures in the range 0.1–1 TPa (10 Mbar). J. Appl. Phys. 90, 696698.
Ness, N.F., Acuna, M.H., Behannon, K.W., Burlaga, L.F., Connerney, J.E.P. & Lepping, R.P. (1986). Magnetic fields at Uranus. Science 233, 8589.
Nishimura, H., Shiraga, H., Azechi, H., Miyanaga, N., Nakai, M., Izumi, N., Nishikino, M., Heya, M., Fujita, K., Ochi, Y., Shigemori, K., Ohnishi, N., Murakami, M., Nishihara, K., Ishizakia, R., Takabe, H., Nagai, K., Norimatsu, T., Nakatsuka, M., Yamanaka, T., Nakai, S., Yamanakab, C. & Mima, K. (2000). Indirect-direct hybrid target experiments with the GEKKO XII laser. Nucl. Fusion 40, 547556.
Okihara, S., Esirkepov, T.Zh., Nagai, K., Shimizu, S., Sato, F., Hashida, M., Iida, T., Nishihara, K., Norimatsu, T., Izawa, Y. & Sakabe, S. (2004). Ion generation in a low-density plastic foam by interaction with intense femtosecond laser pulses. Phys. Rev. E 69, 026401404.
Pant, H.C., Shukla, M., Pandey, H.D., Kashyap, Y., Sarkar, P.S., Sinha, A., Senecham, V.K. & Godwal, B.K. (2006). Enhancement of laser induced shock pressure in multilayer solid targets. Laser Part. Beams 24, 169174.
Pavlovskii, M.N. (1971). Shock compression of diamond. Soviet Phys. Solid State 13, 741.
Piriz, A.R., Cela, J.J.L., Serena Moreno, M.C., Tahir, N.A. & Hoffmann, D.H.H. (2006). Thin plate effects in the Rayleigh-Taylor instability of elastic solids. Laser Part. Beams 24, 275282.
Piseri, P., Podestà, A., Barborini, E. & Milani, P. (2001). Production and characterization of highly intense and collimated cluster beams by inertial focusing in supersonic expansions. Rev. Sci. Instr. 72, 22612267.
Ramis, R. & Meyer-ter-Vehn, J. (1992). MULTI2D-A Computer Code for Two-Dimensional Radiation Hydrodynamics. Munchen, Germany: Max-Planck-Institut für Quantenoptik.
Ross, M. (1981). The ice layer in Uranus and Neptune—diamonds in the sky? Nature 292, 435436.
Ross, M. (1985). Matter under extreme conditions of temperature and pressure. Rtp. Prog. Phys. 48, 152.
Ruoff, A.L. & Luo, H. (1991). Pressure strengthening: A possible route to obtaining 9 Mbar and metallic diamonds. J. Appl. Phys. 70, 2066.
Saumon, D., Chabrier, G. & Vanhorn, H.M. (1995). An equation of state for low-mass stars and giant planets. Astrophys. J. 99, 713741.
Scandolo, S., Chiarotti, G.L. & Tosatti, E. (1996). SC4: A metallic phase of carbon at terapascal pressures. Phys. Rev. B 53, 50515054.
Sekine, T. (1999). Sixfold-coordinated carbon as a post diamond phase. Appl. Phys. Lett. 74, 350352.
SESAME. (1983). Report on the Los Alamos equation-of-state library. Report No. LALP-83-4. Los Alamos, NM: Los Alamos National Laboratory.
Stevenson, R.M., Norman, M.J., Bett, T.H., Pepler, D.A., Danson, C.N. & Ross, I.N. (1994). Binary-phase zone plate arrays for the generation of uniform focal profiles. Opt. Lett. 19, 363.
Teyssier, R., Ryutov, D. & Remington, B. (2000). Accelerating shock waves in a laser-produced density gradient, Astrophys. J. 127, 503508.
Vinci, T., Koenig, M., Benuzzi-Mounaix, A., Boireau, L., Bouquet, S., Leygnac, S., Michaut, C., Stehle, C., Peyrusse, O. & Batani, D. (2005). Density and temperature measurements on laser generated radiative shocks. Astrophys. Space Sci. 298, 333336.
Winhart, G., Eidmann, H., Iglesias, C.A. & Bar-Shalom, A. (1996). Measurements of extreme uv opacities in hot dense Al, Fe, and Ho. Phys. Rev. E 53, R1332R1335.
Zeldovich, Y.B. & Raizer, Y.P. (1967). Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. New York: Academic Press.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed