Skip to main content Accessibility help

Rayleigh–Taylor instability at a tilted interface in laboratory experiments and numerical simulations



This article investigates the molecular mixing caused by Rayleigh–Taylor (RT) instability of a gravitationally unstable density interface tilted at a small angle to the horizontal. The mixing is measured by the increase in background potential energy, and the mixing efficiency, or fraction of energy irreversibly lost to fluid motion doing work against gravity, is calculated. Laboratory experiments are carried out using saline and fresh water, and modeled with compressible numerical simulations, with a suitable choice of parameters and initial conditions. The experiments show that the high cumulative efficiency of mixing in RT instability at a horizontal interface is only slightly reduced by an interface tilt of up to 10°, despite the strong overturning that occurs. Instantaneous mixing efficiencies as high as 0.5–0.6 are measured, when RT instability is active, with lower values of about 0.35 during the subsequent overturning. The numerical simulations capture the most unstable scales and the overturning motion well, but generate more mixing than the experiments, with the instantaneous mixing efficiency remaining at 0.5 for most of the run. The difference may be due to restratification at small scales in the high Prandtl number experiments.


Corresponding author

Address correspondence and reprint requests to: Joanne M. Holford, DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom.


Hide All


Caulfield, C.P. & Peltier, W.R. (2000). Mixing in stratified shear flows: Dependence on initial conditions. Proc. of 5th Int. Symp. on Strat. Flows, (Lawrence, G.A., Pieters, R. and Yonemitsu, N., Eds.), pp. 483488.
Cook, A.W. & Dimotakis, P.E. (2001). Transitional stages of Rayleigh–Taylor instability between miscible fluids. J. Fluid Mech. 443, 6999.
Dalziel, S.B., Linden, P.F. & Youngs, D.L. (1999). Self-similarity and internal structure of turbulence induced by Rayleigh–Taylor instability. J. Fluid Mech. 399, 148.
Linden, P.F. & Redondo, J.M. (1991). Molecular mixing in Rayleigh–Taylor instability. Part I. Global mixing. Phys. Fluids A 3, 12691277.
Linden, P.F., Redondo, J.M. & Youngs, D.L. (1994). Molecular mixing in Rayleigh–Taylor instability. J. Fluid Mech. 265, 97124.
Lorenz, E.N. (1955). Available potential energy and the maintenance of the general circulation. Tellus 7, 157167.
Winters, K.B., Lombard, P.N., Riley, J.J. & D'Asaro E.A. (1995). Available potential energy and mixing in density-stratified fluids. J. Fluid Mech. 289, 115128.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed