Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-23T02:44:23.606Z Has data issue: false hasContentIssue false

A plasma focus device as a metallic plasma jet generator

Published online by Cambridge University Press:  20 April 2016

A. Kasperczuk
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
M. Paduch
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
K. Tomaszewski
Affiliation:
ACS Laboratory, ACS Ltd., Warsaw, Poland
E. Zielinska*
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
R. Miklaszewski
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
A. Szymaszek
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
*
Address correspondence and reprint requests to: E. Zielinska, Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland. E-mail: ewa.zielinska@ifpilm.pl

Abstract

This paper aims at a test of a plasma focus (PF) device as a metallic plasma jet generator. The experiment was carried out at the DPF-1000U device in which the inner electrode face was conically shaped. Deuterium (D2) with the initial pressure of 0.9 Torr was used as a filling gas. In the experiment, a metallic plasma was ensured due to erosion of the inner electrode during a PF discharge. To create the metallic plasma jet, the eroded copper (Cu) plasma, swept by the deuterium plasma sheath, was accelerated axially and compressed to very small radius (about 1–2 mm). The Cu plasma jet achieved a velocity of 3 × 107 cm/s. To study processes of the plasma jet creation and propagation a 16-frame laser interferometer and a four-frame X-ray pinhole camera were used. Recorded images prove a successful adaptation of the PF device to the metallic plasma jet generator.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Coker, R.F., Wilde, B.H., Foster, J.M., Blue, B.E., Rosen, P.A., Williams, R.J.R., Hartigan, P., Frank, A. & Back, C.A. (2007). Numerical simulations and astrophysical applications of laboratory jets at Omega. Astrophys. Space Sci. 307, 5762.Google Scholar
Farley, D.R., Estabrook, K.G., Glendinning, S.G., Glenzer, S.H., Remington, B.A., Shigemori, K., Stone, J.M., Wallance, R.J., Zimmerman, G.B. & Harte, J.A. (1999). Stable dense plasma jets produced at laser power densities around 1014 W/cm2. Phys. Rev. Lett. 83, 19821985.Google Scholar
Hartigan, P., Foster, J.M., Wilde, B.H., Coker, R.F., Rosen, P.A., Hansen, J.F., Blue, B.E., Williams, R.J.R., Carver, R. & Frank, A. (2009). Laboratory experiments, numerical simulations, and astronomical observations of deflected supersonic jets: Application to HH110. Astrophys. J. 705, 10731094.Google Scholar
Kasperczuk, A., Kumar, R., Miklaszewski, R., Paduch, M., Pisarczyk, T., Scholz, M., and Tomaszewski, K. (2002). Study of the plasma evolution in the PF-1000 device by means of optical diagnostics. Phys. Scr. 65, 96102.Google Scholar
Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Rohlena, K., Skala, J. & Hora, H. (2006). Stable dense plasma jets produced at laser power densities around 1014 W/cm2. Phys. Plasmas 13, 18.Google Scholar
Kasperczuk, A., Pisarczyk, T., Demchenko, N.N., Gus'kov, S.Yu., Kalal, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2009). Experimental and theoretical investigations of mechanisms responsible for plasma jet formation at PALS. Laser Part. Beams 27, 415427.Google Scholar
Kasperczuk, A., Pisarczyk, T., Badziak, J., Borodziuk, S., Chodukowski, T., Gus'kov, S.Yu., Demchenko, N.N., Klir, D., Kravarik, J., Kubes, P., Rezac, K., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2011). Interaction of a laser-produced copper plasma with ambient plastic plasma. Plasma Phys. Control. Fusion 53, 116.Google Scholar
Kasperczuk, A., Pisarczyk, T., Chodukowski, T., Kalinowska, Z., Gus'kov, S.Yu., Demchenko, N.N., Ullschmied, J., Krousky, E., MasekPfeifer, M. Pfeifer, M., Skala, J. & Pisarczyk, P. (2014). Interactions of plastic plasma with different atomic number plasmas. Phys. Scr. T 161, 14.Google Scholar
Kasperczuk, A., Pisarczyk, T., Chodukowski, T., Kalinowska, Z., Stepniewski, W., Jach, K., Swierczynski, R., Renner, O., Smid, M., Ullschmied, J., Cighardt, J., Klir, D., Kubes, P., Rezac, K., Krousky, E., Pfeifer, M. & Skala, J. (2015). Efficiency of ablative plasma energy transfer into a massive aluminum target using different atomic number ablators. Laser Part. Beams 33, 379386.Google Scholar
Lebedev, S.V., Chittenden, J.P., Beg, F.N., Bland, S.N., Ciardi, A., Ampleford, D., Hughes, S., Haines, M.G., Frank, A., Blackman, E.G. & Gardiner, T. (2002). Laboratory astrophysics and collimated stellar outflows: The production of radiatively cooled hypersonic plasma jets. Astrophys. J. 564, 113119.Google Scholar
Shigemori, K., Kodama, R., Farley, D.R., Koase, T., Estabrook, K.G., Remington, B.A., Ryutov, D.D., Ochi, Y., Azechi, H., Stone, J. & Turner, N. (2000). Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets. Phys. Rev. E 62, 88388841.Google Scholar
Zel'dovich, Ya.B. & Raizer, Yu. P. (1996). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, vol. I, New York and London: Academic Press.Google Scholar
Zielińska, E., Paduch, M. & Scholz, M. (2011). Sixteen-frame interferometer for a study of a pinch dynamics in PF-1000 device. Contrib. Plasma Phys. 51, 279283.Google Scholar