Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T15:29:58.034Z Has data issue: false hasContentIssue false

Neutron penumbral imaging of inertial confinement fusion targets

Published online by Cambridge University Press:  09 March 2009

J-P. Garçonnet
Affiliation:
Commissariat à l'Energie Atomique, Centre d'Etudes de Limeil-Valenton, 94195 Villeneuve-Saint-Georges Cedex, France
O. Delage
Affiliation:
Commissariat à l'Energie Atomique, Centre d'Etudes de Limeil-Valenton, 94195 Villeneuve-Saint-Georges Cedex, France
D. Schirmann
Affiliation:
Commissariat à l'Energie Atomique, Centre d'Etudes de Limeil-Valenton, 94195 Villeneuve-Saint-Georges Cedex, France
A. Bertin
Affiliation:
Commissariat à l'Energie Atomique, Centre d'Etudes de Bruyères Le Châtel, BP 12, 91680 Bruyères Le Châtel, France
G. Grenier
Affiliation:
Commissariat à l'Energie Atomique, Centre d'Etudes de Bruyères Le Châtel, BP 12, 91680 Bruyères Le Châtel, France
B. Guilpart
Affiliation:
Commissariat à l'Energie Atomique, Centre d'Etudes de Bruyères Le Châtel, BP 12, 91680 Bruyères Le Châtel, France
A. Rouyer
Affiliation:
Commissariat à l'Energie Atomique, Centre d'Etudes de Bruyères Le Châtel, BP 12, 91680 Bruyères Le Châtel, France

Abstract

The first 14-MeV neutron images of imploded microballoons have been obtained on the Phébus laser facility at CEL-V. The sizes of the source have been measured, in direct-drive experiments, by means of a coded-aperture imaging system. The principle is to use a thick aperture with a diameter larger than that of the source to image the microballoon. The deconvolution of the recorded image allows one to reconstruct the image of the neutron source, and this technique allows one to obtain images at a lower neutron yield than with a conventional pinhole camera. The choice of the experimental conditions is a trade-off between the Phébus conditions, the spatial resolution, and the image reconstruction method that is related to the signalto-noise ratio. The sensitivity of the diagnostic is strongly dependent on the number of scintillator photons that are collected by the recording system. The neutron measurement threshold of our experimental setup is typically 2 × 1010 neutrons/shot for neutron source sizes of 800 μm.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arsenault, H. & Denis, M. 1983 Can. J. Phys. 61, 309.CrossRefGoogle Scholar
Chen, Y.W. et al. 1990 ILE-QPR 89, 30.Google Scholar
Garçonnet, J.P. et al. 1992a Rev. Sci. Instrum. 63(10), 4871.CrossRefGoogle Scholar
Garçonnet, J.P. et al. 1992b Rev. Sci. Instrum. 63(10), 4866.Google Scholar
Koenig, M. et al. 1990 Report LULI 90, 77.Google Scholar
Miyanaga, N. & Nakai, S. 1993 6th National Topical Conference on High Temperature Plasma Diagnostics (St. Petersburg).Google Scholar
Nugent, K.A. & Luther-Davies, B. 1986 Appl. Op. 25, 1008.CrossRefGoogle Scholar
Nugent, K.A. 1988 Rev. Sci. Instrum. 59, 8.CrossRefGoogle Scholar
Ress, D. et al. 1988 Rev. Sci. Instrum. 59, 1694.CrossRefGoogle Scholar