Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-19T09:18:21.294Z Has data issue: false hasContentIssue false

Near-microcoulomb multi-MeV electrons generation in laser-driven self-formed plasma channel

Published online by Cambridge University Press:  24 July 2017

Y. Yang
Affiliation:
Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900, People's Republic of China
J. Jiao
Affiliation:
Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900, People's Republic of China
C. Tian
Affiliation:
Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900, People's Republic of China
Y. Wu
Affiliation:
Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900, People's Republic of China IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
K. Dong
Affiliation:
Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900, People's Republic of China
W. Zhou
Affiliation:
Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900, People's Republic of China IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
Y. Gu
Affiliation:
Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900, People's Republic of China IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
Z. Zhao*
Affiliation:
Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900, People's Republic of China IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
*
Address correspondence and reprint requests to: Z. Zhao, Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900, People's Republic of China. E-mail: zhaozongqing99@caep.cn

Abstract

The origin and characteristics of near-microcoulomb multi-MeV electrons accelerated by short pulse lasers interacting with near-critical density plasma in self-formed channels are studied using three-dimensional particle-in-cell simulations. According to the analysis on interaction phenomena and electron dynamics, the dominant mechanism turns out to be direct laser acceleration, which ensures the outstanding energy coupling. Additionally, self-channeling is found to be a decisive factor for the acceleration performance, as electrons obtain ultra-high energy through betatron resonance inside the channels. In our findings, by using a relativistic short laser pulse and near-critical plasma, a large amount of energetic electrons can be generated, presenting a promising and accessible route to ultraintense, high-spatial-resolution radiation pulses.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

Adachi, M., Miura, E., Kato, S., Koyama, K., Masuda, S., Watanabe, T., Okamoto, H., Ogata, A. & Tanimoto, M. (2006). Cascade acceleration of electrons by laser wakefield and direct laser field. Jpn. J. Appl. Phys. 45, 42144218.Google Scholar
Brambrink, E., Wei, H.G., Barbrel, B., Audebert, P., Benuzzi-Mounaix, A., Boehly, T., Endo, T., Gregory, C., Kimura, T., Kodama, R., Ozaki, N., Park, H.-S., Rabec le Gloahec, M. & Koenig, M. (2009). X-ray source studies for radiography of dense matter. Phys. Plasmas 16, 033101 (7 pp).Google Scholar
Chen, L.M., Kotaki, H., Nakajima, K., Koga, J., Bulanov, S.V., Tajima, T., Gu, Y.Q., Peng, H.S., Wang, X.X., Wen, T.S., Liu, H.J., Jiao, C.Y., Zhang, C.G., Huang, X.J., Guo, Y., Zhou, K.N., Hua, J.F., An, W.M., Tang, C.X. & Lin, Y.Z. (2007). Self-guiding of 100 TW femtosecond laser pulses in centimeter-scale underdense plasma. Phys. Plasmas 14, 040703 (4 pp).Google Scholar
Compant La Fontaine, A., Courtois, C. & Lefebvre, E. (2012). Production of multi-MeV Bremsstrahlung x-ray sources by petawatt laser pulses on various targets. Phys. Plasmas 19, 023104 (10 pp).Google Scholar
Courtois, C., Compant La Fontaine, A., Landoas, O., Lidove, G., Méot, V., Morel, P., Nuter, R., Lefebvre, E., Boscheron, A., Grenier, J., Aléonard, M.M., Gerbaux, M., Gobet, F., Hannachi, F., Malka, G., Scheurer, J.N. & Tarisien, M. (2009). Effect of plasma density scale length on the properties of bremsstrahlung x-ray sources created by picosecond laser pulses. Phys. Plasmas 16, 013105 (12 pp).Google Scholar
Courtois, C., Edwards, R., Compant La Fontaine, A., Aedy, C., Barbotin, M., Bazzoli, S., Biddle, L., Brebion, D., Bourgade, J.L., Drew, D., Fox, M., Gardner, M., Gazave, J., Lagrange, J.M., Landoas, O., Le Dain, L., Lefebvre, E., Mastrosimone, D., Pichoff, N., Pien, G., Ramsay, M., Simons, A., Sircombe, N., Stoeckl, C. & Thorp, K. (2011). High-resolution multi-MeV x-ray radiography using relativistic laser-solid interaction. Phys. Plasmas 18, 023101 (5 pp).Google Scholar
Courtois, C., Edwards, R., Compant La Fontaine, A., Aedy, C., Bazzoli, S., Bourgade, J.L., Gazave, J., Lagrange, J.M., Landoas, O., Le Dain, L., Mastrosimone, D., Pichoff, N., Pien, G. & Stoeckl, C. (2013). Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography. Phys. Plasmas 20, 083114 (9 pp).Google Scholar
Gahn, C., Tsakiris, G.D., Pukhov, A., Meyer-ter-Vehn, J., Pretzler, G., Thirolf, P., Habs, D. & Witte, K.J. (1999). Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels. Phys. Rev. Lett. 83, 47724775.Google Scholar
Gibbon, P. (2005). Short pulse laser interactions with matter. In Propagation of Finite-Width Laser Pulses (Garden, C., Ed.), pp. 9697. London: Imperial College Press.Google Scholar
Glinec, Y., Faure, J., Le Dain, L., Darbon, S., Hosokai, T., Santos, J.J., Lefebvre, E., Rousseau, J.P., Burgy, F., Mercier, B. & Malka, V. (2005). High-resolution γ-ray radiography produced by a laser–plasma driven electron source. Phys. Rev. Lett. 94, 025003 (4 pp).Google Scholar
Gu, Y.J., Kong, Q., Li, Y.Y., Ban, H.Y., Zhu, Z. & Kawata, S. (2011). Steady plasma channel formation and particle acceleration in an interaction of an ultraintense laser with near-critical density plasma. Phys. Plasmas 18, 030704 (4 pp).Google Scholar
Iwawaki, T., Habara, H., Baton, S., Morita, K., Fuchs, J., Chen, S., Nakatsutsumi, M., Rousseaux, C., Filippi, F., Nazarov, W. & Tanaka, K.A. (2014). Collimated fast electron beam generation in critical density plasma. Phys. Plasmas 21, 113103 (8 pp).Google Scholar
Kneip, S., Nagel, S.R., Bellei, C., Bourgeois, N., Dangor, A.E., Gopal, A., Heathcote, R., Mangles, S.P.D., Marquès, J.R., Maksimchuk, A., Nilson, P.M., Ta Phuoc, K., Reed, S., Tzoufras, M., Tsung, F.S., Willingale, L., Mori, W.B., Rousse, A., Krushelnick, K. & Najmudin, Z. (2008). Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity. Phys. Rev. Lett. 100, 105006 (4 pp).Google Scholar
Krygier, A.G., Schumacher, D.W. & Freeman, R.R. (2014). on the origin of super-hot electrons from intense laser interactions with solid targets having moderate scale length preformed plasmas. Phys. Plasmas 22, 023112 (8 pp).Google Scholar
Liu, B., Hu, R.H., Wang, H.Y., Wu, D., Liu, J., Chen, C.E., Meyer-ter-Vehn, J., Yan, X.Q. & He, X.T. (2015). Quasimonoenergetic electron beam and brilliant gamma-ray radiation generated from near critical density plasma due to relativistic resonant phase locking. Phys. Plasmas 22, 080704 (5 pp).Google Scholar
Malka, V., Faure, J., Marquès, J.R., Amiranoff, F., Rousseau, J.P., Ranc, S., Chambaret, J.P., Najmudin, Z., Walton, B., Mora, P. & Solodov, A. (2001). Characterization of electron beams produced by ultrashort (30fs) laser pulses. Phys. Plasmas 8, 26052608.Google Scholar
Mangles, S.P.D., Walton, B.R., Tzoufras, M., Najmudin, Z., Clarke, R.J., Dangor, A.E., Evans, R.G., Fritzler, S., Gopal, A., Hernandez-Gomez, C., Mori, W.B., Rozmus, W., Tatarakis, M., Thomas, A.G.R., Tsung, F.S., Wei, M.S. & Krushelnick, K. (2005). Electron acceleration in cavitated channels formed by a petawatt laser in low-density plasma. Phys. Rev. Lett. 94, 245001 (4 pp).Google Scholar
Masuda, S., Miura, E., Koyama, K., Kato, S., Adachi, M., Watanabe, T., Torii, K. & Tanimoto, M. (2007). Energy scaling of monoenergetic electron beams generated by the laser-driven plasma based accelerator. Phys. Plasmas 14, 023103 (8 pp).Google Scholar
Naseri, N., Pesme, D., Rozmus, W. & Popov, K. (2012). Channeling of relativistic laser pulses, surface waves, and electron acceleration. Phys. Rev. Lett. 108, 105001 (4 pp).Google Scholar
Nieter, C. & Cary, J.R. (2004). VORPAL: A versatile plasma simulation code. J. Comput. Phys. 196, 448473.Google Scholar
Pukhov, A. & Meyer-ter Vehn, J. (1996). Relativistic magnetic self-channeling of light in near-critical plasma: Three dimensional particle-in-cell simulation. Phys. Rev. Lett. 76, 39753978.Google Scholar
Pukhov, A. & Meyer-ter-Vehn, J. (2002). Laser wake field acceleration: The highly non-linear broken-wave regime. Appl. Phys. B 74, 355361.Google Scholar
Pukhov, A., Sheng, Z.-M. & Meyer-ter-Vehn, J. (1999). Particle acceleration in relativistic laser channels. Phys. Plasmas 6, 28472854.Google Scholar
Santala, M.I.K., Najmudin, Z., Clark, E.L., Tatarakis, M., Krushelnick, K., Dangor, A.E., Malka, V., Faure, J., Allott, R. & Clarke, R.J. (2001). Observation of a hot high-current electron beam from a self-modulated laser wakefield accelerator. Phys. Rev. Lett. 86, 12271230.Google Scholar
Shaw, J.L., Tsung, F.S., Vafaei-Najafabadi, N., Marsh, K.A., Lemos, N., Mori, W.B. & Joshi, C. (2014). Role of direct laser acceleration in energy gained by electrons in a laser wakefield accelerator with ionization injection. Plasma Phys. Control. Fusion 56, 084006 (7 pp).Google Scholar
Shen, B., Wu, Y., Dong, K., Zhu, B., Gu, Y., Ji, L., Jiao, C., Teng, J., Hong, W., Zhao, Z., Cao, L., Wang, X. & Yu, M. (2012). High-charge energetic electron bunch generated by 100 TW laser pulse. Phys. Plasmas 19, 033106 (5 pp).Google Scholar
Shou, Y.R., Lu, H.Y., Hu, R.H., Lin, C., Wang, H.Y., Zhou, M.L., He, X.T., Chen, J.E. & Yan, X.Q. (2016). Near-diffraction-limited laser focusing with a near-critical density plasma lens. Opt. Lett. 41, 139142.Google Scholar
Ting, A., Moore, C.I., Krushelnick, K., Manka, C., Esarey, E., Sprangle, P., Hubbard, R., Burris, H.R., Fischer, R. & Baine, M. (1997). Plasma wakefield generation and electron acceleration in a self-modulated laser wakefield accelerator experiment. Phys. Plasmas 4, 18891899.Google Scholar
Toncian, T., Wang, C., McCary, E., Meadows, A., Arefiev, A.V., Blakeney, J., Serratto, K., Kuk, D., Chester, C., Roycroft, R., Gao, L., Fu, H., Yan, X.Q., Schreiber, J., Pomerantz, I., Bernstein, A., Quevedo, H., Dyer, G., Ditmire, T. & Hegelich, B.M. (2016). Non-Maxwellian electron distributions resulting from direct laser acceleration in near-critical plasmas. Matter Radiat. Extrem. 1, 8287.Google Scholar
Wang, H.Y., Lin, C., Sheng, Z.M., Liu, B., Zhao, S., Guo, Z.Y., Lu, Y.R., He, X.T., Chen, J.E. & Yan, X.Q. (2011). Laser shaping of a relativistic intense, short Gaussian pulse by a plasma lens. Phys. Rev. Lett. 107, 265002 (5 pp).Google Scholar
Wang, J., Zhao, Z.Q., Zhu, B., Zhang, Z.M., Cao, L.H., Zhou, W.M. & Gu, Y.Q. (2015). Refluxed electrons direct laser acceleration in ultrahigh laser and relativistic critical density plasma interaction. Phys. Plasmas 22, 013106 (6 pp).Google Scholar
Wang, X., Krishnan, M., Saleh, N., Wang, H. & Umstadter, D. (2000). electron acceleration and the propagation of ultrashort high-intensity laser pulses in plasmas. Phys. Rev. Lett. 84, 53245327.Google Scholar
Westover, B., MacPhee, A., Chen, C., Hey, D., Ma, T., Maddox, B., Park, H.-S., Remington, B. & Beg, F.N. (2010). Study of silver Kα and bremsstrahlung radiation from short-pulse laser-matter interactions with applications for x-ray radiography. Phys. Plasmas 17, 082703 (5 pp).Google Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.Google Scholar
Xu, J., Shen, B., Zhang, X., Wen, M., Ji, L., Wang, W., Yu, Y. & Nakajima, K. (2010). Generation of a large amount of energetic electrons in complex-structure bubble. New J. Phys. 12, 023037 (9 pp).Google Scholar
Yu, M.Y., Yu, W., Chen, Z.Y., Zhang, J., Yin, Y., Cao, L.H., Lu, P.X. & Xu, Z.Z. (2003). Electron acceleration by an intense short-pulse laser in underdense plasma. Phys. Plasmas 10, 24682474.Google Scholar