Skip to main content Accessibility help
×
Home

Multiply charged ion emission from laser produced tungsten plasma

  • B. Ilyas (a1), A.H. Dogar (a2), S. Ullah (a2), N. Mahmood (a3) and A. Qayyum (a2)...

Abstract

Plasma was generated by focusing 10 ns Nd:YAG (λ = 1064 nm) laser pulse on the thick tungsten target. The laser fluence at the target was varied in the range of 3.57–10.97 J/cm2. The ion emission from the expanding tungsten plasma was analyzed with the help of an ion collector and time-of-flight electrostatic ion energy analyzer. About 44 times rise in the ion charge per laser shot was observed in the investigated laser fluence range. The measured threshold fluence for onset of the tungsten plasma was 3.27 J/cm2. The estimated plume expansion coefficient Zinf/Xinf = 2.5 ± 0.2 was in agreement with the previous experimental studies and the predictions of self-similar plume expansion model. The electrostatic ion energy analyzer study showed that charge state of the W ions increases with the laser fluence and maximum ion charge state was 5+. It was observed that threshold fluence for appearance of a specific charge state can be measured. A clear correlation between the relative abundances of W(n−1)+, Wn+, and W(n+1)+ indicates that higher order charge states are most probably produced by stepwise ionization process.

Copyright

Corresponding author

Address correspondence and reprint requests to: A. Qayyum, Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan. E-mail: aqayyum11@yahoo

References

Hide All
Alekseev, N.N., Balabaev, A.N., Vasilyev, A.A., Satov, Y.A., Savin, S.M., Sharkov, B.Yu., Shumshurov, A.V. & Roerich, V.C. (2012). Development of laser-plasma generator for injector of C4+ ions. Laser Part. Beams 30, 6573.
Amoruso, S., Berardi, V., Bruzzese, R., Spinelli, N. & Wang, X. (1998). Kinetic energy distribution of ions in the laser ablation of copper targets. Appl. Surf. Sci. 127–129, 953958.
Anisimov, S.I., Bäuerle, D. & Luk'yanchuk, B.S. (1993). Gas dynamics and film profiles in pulsed-laser deposition of materials. Phys. Rev. B 48, 1207612081.
Beigman, I., Pospieszczyk, A., Sergienko, G., Tolstikhina, I.Yu. & Vainshtein, L. (2007). Tungsten spectroscopy for the measurement of W-fluxes from plasma facing components. Plasma Phys. Contr. Fusion 49, 18331847.
Benavides, O., Lebedeva, O. & Golikov, V. (2011). Reflection of nanosecond Nd:YAG laser pulses in ablation of metals. Opt. Expr. 19, 2184221848.
Braren, B., Bukoski, J. & Norton, D. (1993). Laser Ablation in Material Processing and Applications. Pittsburgh: Material research Society.
Burdt, R.A., Yuspeh, S., Sequoia, K.L., Tao, Y., Tillack, M.S. & Najmabadi, F. (2009). Experimental scaling law for mass ablation rate from a Sn plasma generated by a 1064nm laser. J. Appl. Phys. 106, 03331010333105.
Caridi, F., Torrisi, L., Mezzasalma, A.M., Mondio, G. & Borrielli, A. (2009). Al2O3 plasma production during pulsed laser deposition. Eur. Phys. J. D. 54, 467472.
Dogar, A.H., Ilyas, B., Qayyum, H., Ullah, S. & Qayyum, A. (2011). Angular distributions of flux and energy of the ions emitted during pulsed laser ablation of copper. Eur. Phys. J. Appl. Phys. 54, 1030110304.
Dubenkov, V., Sharkov, B., Golubev, A., Shumshurov, A., Shamaev, O., Roudskoy, I., Sireltov, A., Satov, Y., Makarov, K., Smakovsky, Y., Hoffmann, D., Laux, W., Muller, R.W., Spaedtke, P., Stöckl, C., Wolf, B. & Jakoby, J. (1996). Acceleration of Ta+10 ions produced by laser ion source in RFQ MAXILAC. Laser Part. Beams 14, 385392.
Hansen, T.N., Schou, J. & Lunney, J.G. (1999). Langmuir probe study of plasma expansion in pulsed laser ablation. Appl. Phys. A 69, S601S604.
Hirai, T., Maier, H., Rubel, M., Mertens, Ph., Neu, R., Gauthier, E., Likonen, J., Lungu, C., Maddaluno, G., Matthews, G.F., Mitteau, R., Neubauer, O., Piazza, G., Philipps, V., Riccardi, B., Ruset, C., Uytdenhouwen, I. & JET EFDA Contributors. (2007). R&D on full tungsten divertor and beryllium wall for JET ITER-like wall project. Fusion Engineering and Design 82, 18391845.
Hofer, R., Hass, J. & Gallimore, A. (1999). Proc. 26 thInt. Conf. on Electric Propulsion. Kitakyushu. Japan.
Ilyas, B., Dogar, A.H., Ullah, S. & Qayyum, A. (2011). Laser fluence effects on ion emission from a laser-generated Cu plasma. J. Phys. D: Appl. Phys. 44, 295202-1/295202-6.
Kashiwagi, H., Hattori, T., Hayashizaki, N., Yamamato, K., Takahashi, Y. & Hata, T. (2004). Nd-Yag laser ion source for direct injection scheme. Rev. Sci. Instum. 75, 15691571.
Kutner, V.B., Bykovsky, Y.A., Gusev, V.P., Kozyrev, Y.P. & Peklenkov, V.D. (1992). The laser ion source of multiply charged ions for the U-200 LNR JINR cyclotron. Rev. Sci. Instrum. 63, 28352837.
Láska, L., Krása, J., Mašek, K., Pfeifer, M., Trenda, P., Králiková, B., Skála, J., Rolena, K., Woryna, E., Farny, J., Parys, P., Wołowski, J., Mróz, W., Shumshurov, A., Sharkov, B., Collier, J., Langbein, K. & Haseroth, H. (1996). Multiply charged ion generation from NIR and visible laser produced plasma. Rev. Sci. Instum. 67, 950952.
Mannion, P., Favre, S., O'Connor, G.M., Doggett, B. & Lunney, J.G. (2005). Langmuir probe study of plasma expansion in femtosecond pulsed laser ablation of silver. Proc. SPIE 5827, 457466.
Margarone, D., Torrisi, L., Borrielli, A. & Caridi, F. (2008). Silver plasma by pulsed laser ablation. Plasma Sour. Sci. Technol. 17, 035019-1/035019-7.
Mertens, Ph., Altmann, H., Hirai, T., Philipps, V., Pintsuk, G., Rapp, J., Riccardo, V., Schweer, B., Uytdenhouwen, I.abd Samm, U. (2009). Development and qualification of a bulk tungsten divertor row for JET. J. Nucl. Mat. 390–391, 967970.
Mintsev, V., Gryaznov, V., Kulish, M., Fortov, V., Sharkov, B., Golubev, A., Fertman, A., Stöckl, C. & Gardes, D. (1998). On measurements of stopping power in explosively driven plasma targets. Nucl. Instr. Meth. A 415, 715719.
Rapp, J., Pintsuk, G., Mertens, Ph., Altmann, H., Lomas, P.J. & Riccardo, V. (2010). Geometry and expected performance of the solid tungsten outer diverter row in JET. Fusion Engin. Desig. 85, 153160.
Romanov, V.I., Rupasov, A.A., Shikanov, A.S., Paperny, V.L., Moorti, A., Bhat, R.K., Naik, P.A. & Gupta, P.D. (2010). Energy distributions of highly charged ions escaping from a plasma via a low-voltage laser-induced discharge. J. Phys. D: Appl. Phys. 43, 465202-1/465202-7.
Sellmair, J. & Korschinek, G. (1988). The Munich laser ion source. Nucl. Instr. Meth. A 268, 473477.
Sharkov, B. (1995). Handbook of Ion Sources. Boca Raton: Chemical Rubber, 149.
Sharkov, B.Y. & Scrivens, R. (2005). Laser ion sources. IEEE Trans. Plasma Phys. 33, 17781785.
Thestrup, B., Toftmann, B., Schou, J., Doggett, B. & Lunney, J.G. (2002). Ion dynamics in laser ablation plumes from selected metals at 355nm. Appl. Surf. Sci. 197–198, 175180.
Torrisi, L., Caridi, F., Picciotto, A. & Borrielli, A. (2006). Energy distribution of particle ejected by laser-generated aluminum plasma. Nucl. Instr. Meth. B 252, 183189.
Wolowski, J., Celona, L., Ciavola, G., Gammino, S., Krása, J., Láska, L., Parys, P., Rohlena, K., Torrisi, L. & Woryna, E. (2002). Expansion of tungsten ions emitted from laser-produced plasma in axial magnetic and electric fields. laser Part. Beams 20, 113118.
Yeates, P., Costello, J.T. & Kennedy, E.T. (2010). The DCU laser ion source. Rev. Sci. Instum. 81, 043305-1/043305-10.

Keywords

Multiply charged ion emission from laser produced tungsten plasma

  • B. Ilyas (a1), A.H. Dogar (a2), S. Ullah (a2), N. Mahmood (a3) and A. Qayyum (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed