Skip to main content Accessibility help
×
Home

Marginally igniting direct-drive target designs for the laser megajoule

  • V. Brandon (a1), B. Canaud (a1), M. Primout (a1), S. Laffite (a1) and M. Temporal (a2)...

Abstract

Direct-drive target designs below self-ignition threshold are proposed for the laser megajoule in the context of shock-ignition. Two distinct initial aspect ratios are considered and laser pulses are shaped following a classical Kidder's law in order to achieve an implosion velocity of 300 km/s, an in-fight adiabat close to unity and to maximize the peak areal density. The pulse shapes are adjusted to arrange shock timing at the inner side of the DT fuel. The robustness of the laser pulse is addressed by the means of random variations around the initial Kidder's laws. Correlation matrices show no significant correlations between laser parameters. An admissible envelope of laser pulse is given for both designs in order to warrant more than 80% of the best peak areal density. Variations of laser drive power produce variations of implosion velocities in the range 250–370 km/s. Self-ignition threshold is achieved and thermonuclear energy are produced in the range 3 kJ–27 MJ. Finally, the random procedure shows that it is possible to improve the first deterministic optimization and the laser pulses are given.

Copyright

Corresponding author

Address correspondence and reprint requests to: B. Canaud, CEA, DAM, DIF, F-91297 Arpajon, France. E-mail: benoit.canaud@cea.fr

References

Hide All
Atzeni, S. & Meyer-Ter-Vehn, J. (2004). Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Dense Plasma Physics. Oxford: Oxford Science Publications.
Atzeni, S., Schiavi, A. & Bellei, C. (2007). Targets for direct-drive fast ignition at total laser energy of 200–400 kJ. Phys. Plasmas 14, 2702.
Azechi, H., Sakaiya, T., Watari, T., Karasik, M., Saito, H., Ohtani, K., Takeda, K., Hosoda, H., Shiraga, H., Nakai, M., Shigemori, K., Fujioka, S., Murakami, M., Na-gatomo, H., Johzaki, T., Gardner, J., Colombant, D.G., Bates, J.W., Velikovich, A.L., Aglitskiy, Y., Weaver, J., Obenschain, S., Eliezer, S., Kodama, R., Norimatsu, T., Fujita, H., Mima, K. & Kan, H. (2009). Experimental evidence of impact ignition: 100-fold increase of neutron yield by impactor collision. Phys. Rev. Lett. 23, 235002235006.
Basov, N., et al. (1992). Soviet Laser Res. 13, 396.
Bates, J.W., Schmitt, A.J., Fyfe, D.E., Obenschain, S.P. & Zalesak, S.T. (2010). Simulations of high-gain shock-ignited inertial-confinement-fusion implosions using less than 1 MJ of direct KrF-laser energy. Hi. Ener. Density Phys. 6, 128134.
Betti, R., Zhou, C.D., Anderson, K.S., Perkins, L.J., Theobald, W. & Solodov, A.A. (2007). Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett. 98, 155001.
Bodner, S.E., Colombant, D.G., Schmitt, A.J., Gardner, J.H., Lehmberg, R.H. & Obenschain, S.P. (2002). Overview of new high gain target design for a laser fusion power plant. Fusion Engin. Design 60, 9398.
Buresi, E., Coutant, J., Dautray, R., Decroisette, M., Duborgel, B., Guillaneux, P., Launspach, J., Nelson, P., Patou, C., Reisse, J.M. & Watteau, J.P. (1986). Laser program development at CEL-V: Overview of recent experimental results. Laser Part. Beams 4, 531.
Canaud, B. & Temporal, M. (2010). High-gain shock ignition of direct-drive ICF targets for the laser megajoule. New J. Phys. 12, 3037, 2010.
Canaud, B., Brandon, V., Laffite, S. & Temporal, M. (2012). 2D analysis of direct-drive shock-ignited HiPER-like target implosions with the full laser megajoule. Laser Part. Beams 30, 183189.
Canaud, B., Fortin, X., Dague, N. & Bocher, J.L. (2002). Laser megajoule irradiation uniformity for direct drive. Phys. Plasmas 9, 42524260.
Canaud, B., Fortin, X., Garaude, F., Meyer, C. & Philippe, F. (2004 a). Progress in direct-drive fusion studies for the laser megajoule. Laser Part. Beams 22, 109114.
Canaud, B., Fortin, X., Garaude, F., Meyer, C., Philippe, F., Temporal, M., Atzeni, S. & Schiavi, A. (2004 b). High-gain direct-drive target design for the laser megajoule. Nucl. Fusion 44, 11181129.
Canaud, B., Garaude, F., Clique, C., Lecler, N., Masson, A., Quach, R. & Van der Vliet, J. (2007). High-gain direct-drive laser fusion with indirect drive beam layout of laser megajoule. Nuclear Fusion 47, 16521655.
Canaud, B., Laffite, S. & Temporal, M. (2001). Shock ignition of direct-drive double-shell targets. Nucl. Fusion 51.
Deutsch, C. & Didelez, J.P. (2011). Inertial confinement fusion fast ignition with ultra-relativistic electron beams. Laser Part. Beams 29, 3944.
Eliezer, S. & Martinez Val, J.M. (2011). The comeback of shock waves in inertial fusion energy. Laser Part. Beams 29, 175, 2011.
Giorla, J., Bastian, J., Bayer, C., Canaud, B., Casanova, M., Chaland, F., Cherfils, C., Clique, C., Dattolo, E., Fremerye, P., Galmiche, D., Garaude, F., Gauthier, P., Laffite, S., Lecler, N., Liberatore, S., Loiseau, P., Malinie, G., Masse, L., Masson, A., Monteil, M.C., Poggi, F., Quach, R., Renaud, F., Saillard, Y., Seytor, P., Vandenboomgaerde, M., Van der Vliet, J. & Wagon, F. (2006). Target design for ignition experiments on the laser megajoule facility. Plasma physics and controlled marginally igniting direct-drive target designs for the laser megajoule. Fusion 48, B75B82.
Hubbard, W.B. (1966). Studies in stellar evolution. v. transport coefficients of degenerate stellar matter. Astrophys. J. 146, 858.
Kidder, R.E. (1976). Energy gain of laser-compressed pellets — A simple model calculation. Nucl. Fusion 16, 405408.
Laffite, S. & Loiseau, P. (2010). Design of an ignition target for the laser megajoule, mitigating parametric instabilities. Phys. Plasmas 17, 102704.
Lan, K., Lai, D., Zhao, Y. & Li, X. (2012). Initial study and design on ignition ellipraum. Laser Part. Beams 30, 175182.
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.
Lindl, J.D., Amendt, P., Berger, R.L., Glendinning, S.G., Glenzer, S.H., Haan, S.W., Kauffman, R.L., Landen, O.L. & Suter, J. (2004). The physics basis for ignition using indirect-drive targets on the national ignition facility. Phys. Plasmas 11, 339491.
Lion, C. (2010). The LMJ program: An overview. J. Phys. 244, 012003012010.
McKenty, P.W., Sangster, T.C., Alexander, M., Betti, R., Craxton, R.S., Delettrez, J.A., Elasky, L., Epstein, R., Frank, A., Glebov, V.Yu., Goncharov, V.N., Harding, D.R., Jin, S., Knauer, J.P., Keck, R.L., Loucks, S.J., Lund, L.D., McCrory, R.L., Marshall, F.J., Meyerhofer, D.D., Regan, S.P., Radha, P.B., Seka, W., Skupsky, S., Smalyuk, V.A., Soures, J.M., Thorp, K.A., Wozniak, M., Frenje, J.A., Li, C.K., Petrasso, R.D., Seguin, F.H., Fletcher, K.A., Padalino, S., Freeman, C., Izumi, N., Koch, J.A., Lerche, R.A., Moran, M.J., Phillips, T.W., Schmid, G.J. & Sorce, C. (2004). Direct-drive cryogenic target implosion performance on OMEGA. Phys. Plasmas 11, 27902797.
Moses, E. (2012). The National Ignition Facility: status and progress towards fusion ignition. Fusion Sci. Techn. 61, 38.
Murakami, M., Nagatomo, H., Azechi, H., Ogando, F., Perlado, M. & Eliezer, S. (2006). Innovative ignition scheme for ICF-impact fast ignition. Nucl. Fusion 46, 99103.
Murakami, M., Nishihara, K. & Azechi, H. (1993). Irradiation nonuniformity due to imperfections of laser beams. J. Appl.Phys.74, 802808.
Nuckolls, J., Wood, L., Thiessen, A. & Zimmerman, G. (1972). Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nat. 239, 139142.
Perin, J.P. (2010). Cryogenic systems for LMJ cryotarget and HiPER application. Laser Part. Beam 28, 203.
Primout, M. (2004). Optimization of X-ray conversion efficiency of laser-preformed metallic plasma. J. X-ray Sci. Techn. 13, 2336.
Recoules, V., Lambert, F., Decoster, A., Canaud, B. & Clerouin, J. (2009). AbInitio determination of thermal conductivity of dense hydrogen plasmas. Phys. Rev. Lett. 102, 75002.
Ribeyre, X., Schurtz, G., Lafon, M., Galera, S. & Weber, S. (2009). Shock ignition: An alternative scheme for HiPER. Plasma Phys. Contr. Fusion 51, 5013.
Schmitt, A.J., Bates, J.W., Obenschain, S.P., Zalesak, S.T., Fyfe, D.E. & Betti, R. (2009). Direct drive fusion energy shock ignition designs for Sub-MJ lasers. Fusion Sci. Techn. 56, 377383.
Tabak, M. & Callahan, D. (2005). Models of gain curves for fast ignition. Nucl. Instr. Meth. Phys Res. A 544, 4854.
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M. & Perry, M.D. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.
Temporal, M. & Canaud, B. (2009). Numerical analysis of the irradiation uniformity of a directly driven inertial confinement fusion capsule. Euro. Phys. J. D 55, 139145.
Temporal, M., Canaud, B. & Le Garrec, B.J. (2010 a). Irradiation uniformity and zooming performances for a capsule directly driven by a 32 × 9 laser beams configuration. Phys. Plasmas 17, 022701.
Temporal, M., Canaud, B., Laffite, S., Le Garrec, B.J. & Murakami, M. (2010 b). Illumination uniformity of a capsule directly driven by a laser facility with 32 or 48 directions of irradiation. Phys. Plasmas 17, 064504.
Willi, O., Barringer, L., Bell, A., Borghesi, M., Davies, J., G.lard, R., Iwase, A., MacKinnon, A., Malka, G., Meyer, C., Nuruzzaman, S., Taylor, R., Vickers, C., Hoarty, D., Gobby, P., J.son, R., Watt, R.G., Blanchot, N., Canaud, B., Croso, H., Meyer, B., Miquel, J.L., Reverdin, C., Pukhov, A. & Meyer-ter-Vehn, J. (2000). Inertial confinement fusion and fast ignitor studies. Nucl. Fusion 40, 537545.

Keywords

Marginally igniting direct-drive target designs for the laser megajoule

  • V. Brandon (a1), B. Canaud (a1), M. Primout (a1), S. Laffite (a1) and M. Temporal (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed