Skip to main content Accessibility help

Magnetic field-induced signal enhancement in laser-produced lead plasma

  • M. Akhtar (a1) (a2), A. Jabbar (a1) (a2), N. Ahmed (a1) (a3), S. Mehmood (a2), Z.A. Umar (a1), R. Ahmed (a1) and M.A. Baig (a1) (a3)...


Laser-induced breakdown spectroscopy has been exploited to investigate the laser-produced lead plasma with and without external magnetic field. Plasma on the lead surface was generated by focusing a beam of a Nd:YAG laser (532 nm). An external magnetic field was applied across the laser-produced plasma; its value was varied from 0.3 to 0.7 T and the time-integrated spectra were captured at different time delays. Maximum enhancement in the neutral and ionic line intensities have been observed at 130 mJ laser energy. The neutral line of Pb at 368.34 nm reveals an enhancement factor of nearly 1.3, 1.6, and 2.3 at 0.3, 0.5, and 0.7 T, whereas the Pb ionic line at 424.49 nm shows enhancement factor of approximately 2.8 and 4.2 at 0.3 and 0.7 T. The magnetic field effects on various plasma parameters such as plasma temperature, electron number density, and emission line intensities have also been investigated. The plasma parameter “β” is found to be <1 in all the experimental conditions which signifies that the enhancement in the signal intensity is due to the plasma confinement. The increase in the emission signal intensity, number density as well as plasma temperature is observed with increasing laser energy and magnetic field. The spatial and temporal behavior reveals that the plasma temperature and electron number density decrease slowly in the applied magnetic field due to the deceleration of the plasma plume. The optimized conditions for the maximum plasma confinement and the emission intensity enhancement are observed at 130 mJ laser energy at 0.7 T magnetic field.


Corresponding author

Author for correspondence: N. Ahmed, Department of Physics, University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Azad Kashmir. E-mail:,


Hide All
Ahamer, CM and Pedarnig, JD (2018) Femtosecond double pulse laser-induced breakdown spectroscopy: investigation of the intensity enhancement. Spectrochimica Acta Part B 148, 2330.
Ahmed, R, Iqbal, J and Baig, MA (2015) Effects of laser wavelengths and pulse energy ratio on the emission enhancement in dual pulse LIBS. Laser Physics Letters 12, 066102.
Ahmed, N, Umar, ZA, Ahmed, R and Baig, MA (2017) On the elemental analysis of different cigarette brands using laser induced breakdown spectroscopy and laser-ablation time of flight mass spectrometry. Spectrochimica Acta Part B 136, 3944.
Ahmed, N, Ahmed, R and Baig, MA (2018a) Analytical analysis of different karats of gold using laser induced breakdown spectroscopy (LIBS) and laser ablation time of flight mass spectrometer (LA-TOF-MS). Plasma Chemistry and Plasma Processing 38, 207222.
Ahmed, N, Ahmed, R, Umar, ZA, Liaqat, U, Manzoor, U and Baig, MA (2018b) Qualitative and quantitative analyses of copper ores collected from Baluchistan, Pakistan using LIBS and LA-TOF-MS. Applied Physics B 124, 160.
Akhtar, M, Jabbar, A, Mehmood, S, Ahmed, N, Ahmed, R and Baig, MA (2018) Magnetic field enhanced detection of heavy metals in soil using laser induced breakdown spectroscopy. Spectrochimica Acta Part B 148, 143151.
Alonso-Medina, A (2008) Experimental determination of the Stark widths of Pb I spectra lines in a laser-induced plasma. Spectrochimica Acta Part B 63, 598602.
Amin, S, Bashir, S, Anjum, S, Akram, M, Hayat, A, Waheed, S, Iftikhar, H, Dawood, A and Mahmood, K (2017) Optical emission spectroscopy of magnetically confined laser induced vanadium pentoxide (V2O5) plasma. Physics of Plasmas 24, 083112.
Arshad, A, Bashir, S, Hayat, A, Akram, M, Khalid, A, Yaseen, N and Ahmad, QS (2016) Effect of magnetic field on laser-induced breakdown spectroscopy of graphite plasma. Applied Physics B 122, 1.
Bittencourt, JA (1986) Fundamentals of Plasma Physics. Oxford: Pergamon.
Borgia, I, Burgio, LMF, Corsi, M, Fantoni, R, Pallechi, V, Salvetti, A, Squarcialupi, MS and Togoni, E (2000) Self calibrated quantitative elemental analysis by laser-induced plasma spectroscopy. Application to pigment analysis. Journal of Cultural Heritage 1, 281286.
Cabalin, and Laserna, (1998) Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation. Spectrochim Acta B 53, 723730
Chen, FF (1974) Introduction to Plasma Physics. New York: Plenum.
Cristoforetti, G, Legnaioli, S, Palleschi, V, Tognoni, E and Benedetti, PA (2008) Observation of different mass removal regimes during the laser ablation of an aluminum target in air. Journal of Analytical Atomic Spectrometry 23, 15181528.
Cristoforetti, G, De Giacomo, A, Dell'Aglio, M, Legnaioli, S, Togoni, E, Palleschi, V and Omenetto, N (2010) Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields. Spectrochim Acta B 65, 8695.
Dawood, A, Bashir, S, Akram, M, Hayat, A, Ahmed, S, Iqbal, MH and Kazmi, AH (2015) Effect of nature and pressure of ambient environments on the surface morphology, plasma parameters, hardness, and corrosion resistance of laser-irradiated Mg-alloy. Laser and Particle Beams 33, 315330.
De Giacomo, A, Dell'Aglio, M, De Pascale, O, Longo, S and Capitelli, M (2007) Laser induced breakdown spectroscopy on meteorites. Spectrochimica Acta B 62, 16061611.
Diwakar, PK and Hahn, DW (2008) Study of early laser-induced plasma dynamics: Transient electron density gradients via Thomson scattering and Stark Broadening, and the implications on laser-induced breakdown spectroscopy measurements. Spectrochimica Acta Part B 63, 10381046.
Galmed, AH and Harith, MA (2008) Temporal follow up of the LTE conditions in aluminum laser induced plasma at different laser energies. Applied Physics B 91, 651.
Goyer, RA (1990) Lead toxicity: from overt to subclinical to subtle health Health. Perspective 86, 177181.
Griem, HR (1964) Plasma Spectroscopy. New York: McGraw Hill.
Griem, HR (1997) Principles of Plasma Spectroscopy. Cambridge: Cambridge University Press.
Hahn, DW and Lunden, MM (2000) Detection an analysis of aerosol particles by laser induced breakdown spectroscopy. Aerosol Science and Technology 33, 3048.
Hanafi, M, Omar, MM and Gamal, YD (2000) Study of laser induced breakdown spectroscopy of gases. Radiation Physics and Chemistry 57, 1120.
Harilal, SS, Bindhu, CV, Nampoori, VPN and Vallabhan, CPG (1998a) Influence of ambient gas on the temperature and density of laser produced carbon plasma. Applied Physics Letters 72, 167169.
Harilal, SS, Tillack, MS, Shay, BO, Bindhu, CV and Najmabadi, F (2004) Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field. Physical Review E 69, (026413–1)(026413-11).
Hutchinson, IH (2002) Principles of Plasma Diagnostics. New York: Cambridge University Press.
Joshi, H, Kumar, A, Singh, R and Prahlad, V (2010) Effect of a transverse magnetic field on the plume emission in laser-produced plasma. An atomic analysis. Spectrochim Acta B: Atomic Spectroscopy 65, 415419.
Li, Y, Hu, CH, Zhang, HZ, Jiang, Z and Li, ZS (2009) Optical emission enhancement of laser-produced copper plasma under a steady magnetic field. Applied Optics 48, B105.
Lochte-Holtgreven, W (1995) Plasma Diagnostics. New York, USA: AIP Press.
Mason, KJ and Goldberg, JM (1991) Characterization of a laser plasma in a pulsed magnetic field. Part I: Spatially Resolved Emission Studies. Applied Spectroscopy 45, 370379.
Mcwhirter, RWP (1965) Spectral intensities. In Huddlestone, RH and Leonard, SL (eds), Plasma Diagnostic Techniques, Chapter 5, p. 201. New York: Academic.
Michel, APM, Lawrence-Snyder, M, Angel, SM and Chave, AD (2007) Laser induced breakdown spectroscopy of bulk aqueous solution at oceanic pressures evaluation of key measurement parameters. Applied Optics 46, 25072515.
Neogi, A and Thareja, R (1999) Laser-produced carbon plasma expanding in vacuum, low pressure ambient gas and non-uniform magnetic field. Physics of Plasmas 6, 365371.
Pandey, PK and Thareja, RK (2011) Plume dynamics and cluster formation in laser-ablated copper plasma in a magnetic field. Journal of Applied Physics 109, 074901.
Rafique, MS, Khaleeq- ur- Rahman, M, Riaz, I, Jalil, R and Farid, N (2008) External magnetic field effect on plume images X-ray emission from a nanosecond laser produced plasma. Laser Part Beams 26, 217224.
Rai, VN, Shukla, M and Pant, HC (1999) An x-ray biplanar photodiode and the x-ray emission from magnetically confined laser produced plasma. Pramana Journal of Physics 52, 4965.
Rai, VN, Rai, AK, Yueh, FY and Singh, JP (2003) Optical emission from laser-induced breakdown plasma of solid and liquid samples in the presence of a magnetic field. Applied Optics 42, 2085.
Roy, A, Harilal, SS, Hassan, SM, Endo, A and Mocek Tand Hassanein, A (2015) Collimation of laser-produced plasmas using axial magnetic field. Laser and Particle Beams 33, 175182.
Scaffidi, J, Pearman, W, Carter, JC and Angel, SM (2006) Observations in collinear femtosecond- nanosecond dual pulse laser-induced breakdown spectroscopy. Applied Spectroscopy 60(1), 6571.
Shen, X, Lu, Y, Gebre, aT, Ling, H and Han, Y (2006) Optical emission in magnetically confined laser-induced breakdown spectroscopy. Journal of Applied Physics 100, 053303.
Singh, KS and Sharma, AK (2016) Spatially resolved behavior of laser-produced copper plasma along expansion direction in the presence of static uniform magnetic field. Physics of Plasmas 23, 122104.
Singh, KS and Sharma, AK (2017) Time-integrated optical emission studies on laser-produced copper plasma in the presence of magnetic field in air ambient at atmospheric pressure. Applied Physics A: Solids and Surfaces 123, 325.
Stratis, DN, Eland, KL and Angel, SM (2000) Enhancement of aluminum, titanium, and iron in glass using preablation spark dual-pulse LIBS. Applied Spectroscopy 54(12), 17191726.
Sturm, V, Peter, L and Nol, R (2000) Steel analysis with laser induced breakdown spectroscopy in the vacuum ultraviolet. Applied Spectroscopy 54, 12751278.
Sudo, S, Sekiguchi, T and Sato, KN (1978) Re-thermalization and flow of laser-produced plasmas in a uniform magnetic field. Journal of Physics D: Applied Physics 11, 389407.
Teo, J, Goh, K, Ahuja, A, Ng, H and Poon, W (1997) Intracranial vascular calcifications, glioblastoma multiforme, and lead poisoning. American Journal of Neuroradiology 18, 576579.
Thurmer, K, Williams, E and Robey, R (2002) Autocatalytic oxidation of lead crystallite. Surfaces Science 297(5589), 20332035.
Wainner, RT, Harmon, RS, Miziolek, AW, Mcnesby, KL and French, PD (2001) Analysis of environmental lead contamination: comparison of LIBS field and Laboratory instruments. Spectrochimica Acta, part B 56, 777.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed