REFERENCES
Amendt, P.,
Glendinning, S.G.,
Hammel, B.A.,
Landen, O. &
Suter, L.J.
(1996).
Direct measurement of x-ray drive from surrogate targets in NOVA
hohlraums.
Phys. Rev. Lett.
77,
3815–3818.
Besenbruch, G.,
Alexander, N.B.,
Baugh, W.A.,
Bernat, T.P.,
Collins, R.P.,
Boline, K.K.,
Brown, L.C.,
Gibson, C.R.,
Goodin, D.T.,
Harding, D.R,
Lund, L.,
Nobile, A.,
Schultz, K.R. &
Stemke, R.W.
(1999).
Design and testing of cryogenic targets systems. In
Inertial Fusion Science and Applications 9
(Labaune, C.,
Labaune, W.J. &
Tanaka, K.A., Eds.), pp.
921–926.
Paris:
Elsevier.
Borisenko, N.G.,
Akunets, A.A.,
Bushuev, V.S.,
Dorogotovtsev, V.M. &
Merkuliev, Y.A.
(2003).
Motivation and fabrication methods for inertial confinement fusion
and inertial fusion energy targets.
Laser Part. Beams
21,
505–509.
Callahan, D.A.,
Herrmann, M.C. &
Tabak, M.
(2002).
Progress in heavy ion target capsule and hohlraurn design.
Laser Part. Beams
20,
405–410.
Delamater, N.D.,
Lindman, E.L.,
Magelssen, G.R.,
Failor, B.H.,
Murphy, T.J.,
Hauer, A.A.,
Gobby, P.,
Moore, J.B.,
Gomez, V.,
Gifford, K.,
Kauffman, R.L.,
Landen, O.L.,
Hammel, B.A.,
Glendinning, G.,
Powers, L.V.,
Suter, L.J.,
Dixit, S.,
Peterson, R.R. &
Richard, A.L.
(2000).
Observation of reduced beam deflection using smoothed beams in
gas-filled hohlraum symmetry experiments at Nova.
Phys. Plasmas
7,
1609–1613.
Deutsch, C.
(2003).
Transport of mega-electron volt protons for fast ignition.
Laser Part. Beams
21,
33–36.
Deutsch, C.
(2004).
Penetration of intense charged particle beams in the outer layers of
precompressed thermonuclear fuels.
Laser Part. Beams
22,
115–120.
Dittrich, T.R.,
Haan, S.W.,
Marinak, M.M.,
Pollaine, S.M. &
Mceachern, R.
(1998).
Reduced scale national ignition facility capsule design.
Phys. Plasmas
5,
3708–3713.
Goodin, D.T.,
Alexander, N.B.,
Brown, L.C.,
Frey, D.T.,
Gallix, R.,
Gibson, C.R.,
Maxwell, J.L.,
Nobile, A.,
Olson, C.,
Petzoldt, R.W.,
Raffray, R.,
Rochau, G.,
Schroen, D.G.,
Tillack, M.,
Rickman, W.S. &
Vermillion, B.
(2004).
A cost-effective target supply for inertial fusion energy.
Nucl. Fusion
44,
S254–S265.
Hoffer, J.K. &
Foreman, L.R.
(1988).
Radioactively induced sublimation in solid tritium.
Phys. Rev. Lett.
60,
1310–1313.
Hoffmann, D.H.H.,
Weyrich, K.,
Wahl, H.,
Gardes, D.,
Bimbot, R. &
Fleurier, C.
(1990).
Energy-loss of heavy-ions in a plasma target.
Phys. Rev. A
42,
2313–2321.
Hora, H.
(2004).
Developments in inertial fusion energy and beam fusion at magnetic
confinement.
Laser Part. Beams
22,
439–449.
Kauffman, R.L.,
Powers, L.V.,
Dixit, S.N.,
Glendinning, S.G.,
Glenzer, S.H.,
Kirkwood, R.K.,
Landon, O.L.,
Macgowan, B.J.,
Moody, J.D.,
Orzechowski, T.J.,
Pennington, D.M.,
Stone, G.F.,
Suter, L.J.,
Turner, R.E.,
Weiland, T.L.,
Richard, A.L. &
Blain, M.A.
(1998).
Improved gas-filled hohlraum performance on NOVA with beam
smoothing.
Phys. Plasmas
5,
1927–1934.
Kilkenny, J.D.,
Glendinning, S.G.,
Haan, S.W.,
Hammel, B.A.,
Lindl, J.D.,
Munro, D.,
Remington, B.A.,
Weber, S.V.,
Knauer, J.P. &
Verdon, C.P.
(1994).
A review of the ablative stabilization of the Rayleigh-Taylor
instability in regimes relevant to inertial confinement fusion.
Phys. Plasmas
1,
1379–1389.
Koresheva, E.R.,
Osipov, I.E. &
Aleksandrova, I.V.
(2005).
Free standing target technologies for inertial fusion energy: Target
fabrication, characterization, and delivery.
Laser Part. Beams
23,
563–571.
Malka, V.,
Fritzler, S.,
Lefebvre, E.,
Aleonard, M.M.,
Burgy, F.,
Chambaret, J.P.,
Chemin, J.F.,
Krushelnick, K.,
Malka, G.,
Mangles, S.P.D.,
Najmudin, Z.,
Pittman, M.,
Rousseau, J.P.,
Scheurer, J.N.,
Walton, B. &
Dangor, A.E.
(2002).
Electron acceleration by a wake field forced by an intense
ultrashort laser pulse.
Science
298,
1596–1600.
Martin, A.J.,
Simms, R.J. &
Jacobs, R.B.
(1988).
Beta-energy driven uniform deuterium tritium ice layer in
reactor-size cryogenic inertial fusion-targets.
J. Vacuum Sci. Technol. A
6,
1885–1888.
McCrory, R.L.
(2003).
Progress in inertial confinement fusion in the United
States. In
Inertial Fusion Science and Applications
(Hammel, B.A.,
Meyerhofer, D.D.,
Meyer-ter-Vehn, J. &
Azechi, H., Eds.).
LaGrange Park:
American Nuclear Society.
Mulser, P. &
Bauer, D.
(2004).
Fast ignition of fusion pellets with superintense lasers: Concepts,
problems, and prospective.
Laser Part. Beams
22,
5–12.
Nikroo, A.,
Czechowicz, D.,
Paguio, R.,
Paguio, R.,
Greenwood, A.L. &
Takagi, M.
(2004a).
Fabrication and properties of over coated resorcinol-formaldehyde
shells for omega experiments.
Fusion Sci.Technol.
45,
84–89.
Nikroo, A.,
Bousquet, J.,
Cook, R.,
Mcquillan, B.W.,
Paguio, R. &
Takagi, M.
(2004b).
Progress in 2 mm glow discharge polymer mandrel development for
NIF.
Fusion Sci. Technol.
45,
165–170.
Norimatsu, T.,
Nagai, K.,
Takea, T. &
Yamanaka, T.
(2001).
Foam insulated direct-drive cryogenic target. In
Inertial Fusion Science and Applications 2001
(Tanaka, K.A.,
Meyerhofer, D.D. &
Meyer-ter-Vehn, J., Eds.), pp.
752–756.
Paris:
Elsevier.
Olson, R E.,
Leeper, R.J.,
Dropinski, S.C.,
Mix, L.P.,
Rochau, G.A.,
Glenzer, S.H.,
Jones, O.S.,
Suter, L.J.,
Kaae, J.L.,
Shearer, C.H. &
Smith, J.N.
(2003).
Time and spatially resolved measurements of x-ray burn through and
reemission in Au and Au: Dy:Nd foils.
Rev. Sci. Instr.
74,
2186–2190.
Orzechowski, T.J.,
Rosen, M.D.,
Kornblum, H.N.,
Porter, J.L.,
Suter, L.J.,
Thiessen, A.R. &
Wallace, R.J.
(1997).
The Rosseland mean opacity of a mixture of gold and gadolinium at
high temperatures.
Phys. Rev. Lett.
78,
2273–2273.
Rickman, W.S. &
Goodin, D.T.
(2003).
Cost modeling for fabrication of direct drive inertial fusion energy
targets.
Fusion Sci. Technol.
43,
353–358.
Streit, J. &
Schroen, D.
(2003).
Development of divinylbenzene foam shells for use as inertial fusion
energy reactor targets.
Fusion Sci. Technol.
43,
321–326.
Wilson, D.C.,
Bradley, P.A.,
Hoffman, N.M.,
Swenson, F.J.,
Smitherman, D.P.,
Chrien, R.E.,
Margevicius, R.W.,
Thoma, D.J.,
Foreman, L.R.,
Hoffer, J.K.,
Goldman, S.R.,
Caldwell, S.E.,
Dittrich, T.R.,
Haan, S.W.,
Marinak, M.M.,
Pollaine, S.M. &
Sanchez, J.J.
(1998).
The development and advantages of beryllium capsules for the
national ignition facility.
Phys. Plasmas
5,
1953–1959.
Woodworth, J. &
Meier, W.
(1995).
Target production for Inertial Fusion Energy Livermore.
CA:
Lawrence Livermore National Laboratory, Document
UCEL-ID-117396.