Skip to main content Accessibility help
×
Home

Laser targets compensate for limitations in inertial confinement fusion drivers

  • J.D. KILKENNY (a1), N.B. ALEXANDER (a1), A. NIKROO (a1), D.A. STEINMAN (a1), A. NOBILE (a2), T. BERNAT (a3), R. COOK (a3), S. LETTS (a3), M. TAKAGI (a3) and D. HARDING (a4)...

Abstract

Success in inertial confinement fusion (ICF) requires sophisticated, characterized targets. The increasing fidelity of three-dimensional (3D), radiation hydrodynamic computer codes has made it possible to design targets for ICF which can compensate for limitations in the existing single shot laser and Z pinch ICF drivers. Developments in ICF target fabrication technology allow more esoteric target designs to be fabricated. At present, requirements require new deterministic nano-material fabrication on micro scale.

Copyright

Corresponding author

Address correspondence and reprint requests to: J.D. Kilkenny, General Atomics, P.O. Box 85608, San Diego, CA 92121-1122. E-mail: kilkenny@fusion.gat.com

References

Hide All

REFERENCES

Amendt, P., Glendinning, S.G., Hammel, B.A., Landen, O. & Suter, L.J. (1996). Direct measurement of x-ray drive from surrogate targets in NOVA hohlraums. Phys. Rev. Lett. 77, 38153818.
Besenbruch, G., Alexander, N.B., Baugh, W.A., Bernat, T.P., Collins, R.P., Boline, K.K., Brown, L.C., Gibson, C.R., Goodin, D.T., Harding, D.R, Lund, L., Nobile, A., Schultz, K.R. & Stemke, R.W. (1999). Design and testing of cryogenic targets systems. In Inertial Fusion Science and Applications 9 (Labaune, C., Labaune, W.J. & Tanaka, K.A., Eds.), pp. 921926. Paris: Elsevier.
Borisenko, N.G., Akunets, A.A., Bushuev, V.S., Dorogotovtsev, V.M. & Merkuliev, Y.A. (2003). Motivation and fabrication methods for inertial confinement fusion and inertial fusion energy targets. Laser Part. Beams 21, 505509.
Callahan, D.A., Herrmann, M.C. & Tabak, M. (2002). Progress in heavy ion target capsule and hohlraurn design. Laser Part. Beams 20, 405410.
Delamater, N.D., Lindman, E.L., Magelssen, G.R., Failor, B.H., Murphy, T.J., Hauer, A.A., Gobby, P., Moore, J.B., Gomez, V., Gifford, K., Kauffman, R.L., Landen, O.L., Hammel, B.A., Glendinning, G., Powers, L.V., Suter, L.J., Dixit, S., Peterson, R.R. & Richard, A.L. (2000). Observation of reduced beam deflection using smoothed beams in gas-filled hohlraum symmetry experiments at Nova. Phys. Plasmas 7, 16091613.
Deutsch, C. (2003). Transport of mega-electron volt protons for fast ignition. Laser Part. Beams 21, 3336.
Deutsch, C. (2004). Penetration of intense charged particle beams in the outer layers of precompressed thermonuclear fuels. Laser Part. Beams 22, 115120.
Dittrich, T.R., Haan, S.W., Marinak, M.M., Pollaine, S.M. & Mceachern, R. (1998). Reduced scale national ignition facility capsule design. Phys. Plasmas 5, 37083713.
Goodin, D.T., Alexander, N.B., Brown, L.C., Frey, D.T., Gallix, R., Gibson, C.R., Maxwell, J.L., Nobile, A., Olson, C., Petzoldt, R.W., Raffray, R., Rochau, G., Schroen, D.G., Tillack, M., Rickman, W.S. & Vermillion, B. (2004). A cost-effective target supply for inertial fusion energy. Nucl. Fusion 44, S254S265.
Hoffer, J.K. & Foreman, L.R. (1988). Radioactively induced sublimation in solid tritium. Phys. Rev. Lett. 60, 13101313.
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardes, D., Bimbot, R. & Fleurier, C. (1990). Energy-loss of heavy-ions in a plasma target. Phys. Rev. A 42, 23132321.
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439449.
Kauffman, R.L., Powers, L.V., Dixit, S.N., Glendinning, S.G., Glenzer, S.H., Kirkwood, R.K., Landon, O.L., Macgowan, B.J., Moody, J.D., Orzechowski, T.J., Pennington, D.M., Stone, G.F., Suter, L.J., Turner, R.E., Weiland, T.L., Richard, A.L. & Blain, M.A. (1998). Improved gas-filled hohlraum performance on NOVA with beam smoothing. Phys. Plasmas 5, 19271934.
Kilkenny, J.D., Glendinning, S.G., Haan, S.W., Hammel, B.A., Lindl, J.D., Munro, D., Remington, B.A., Weber, S.V., Knauer, J.P. & Verdon, C.P. (1994). A review of the ablative stabilization of the Rayleigh-Taylor instability in regimes relevant to inertial confinement fusion. Phys. Plasmas 1, 13791389.
Koresheva, E.R., Osipov, I.E. & Aleksandrova, I.V. (2005). Free standing target technologies for inertial fusion energy: Target fabrication, characterization, and delivery. Laser Part. Beams 23, 563571.
Malka, V., Fritzler, S., Lefebvre, E., Aleonard, M.M., Burgy, F., Chambaret, J.P., Chemin, J.F., Krushelnick, K., Malka, G., Mangles, S.P.D., Najmudin, Z., Pittman, M., Rousseau, J.P., Scheurer, J.N., Walton, B. & Dangor, A.E. (2002). Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298, 15961600.
Martin, A.J., Simms, R.J. & Jacobs, R.B. (1988). Beta-energy driven uniform deuterium tritium ice layer in reactor-size cryogenic inertial fusion-targets. J. Vacuum Sci. Technol. A 6, 18851888.
McCrory, R.L. (2003). Progress in inertial confinement fusion in the United States. In Inertial Fusion Science and Applications (Hammel, B.A., Meyerhofer, D.D., Meyer-ter-Vehn, J. & Azechi, H., Eds.). LaGrange Park: American Nuclear Society.
Mulser, P. & Bauer, D. (2004). Fast ignition of fusion pellets with superintense lasers: Concepts, problems, and prospective. Laser Part. Beams 22, 512.
Nikroo, A., Czechowicz, D., Paguio, R., Paguio, R., Greenwood, A.L. & Takagi, M. (2004a). Fabrication and properties of over coated resorcinol-formaldehyde shells for omega experiments. Fusion Sci.Technol. 45, 8489.
Nikroo, A., Bousquet, J., Cook, R., Mcquillan, B.W., Paguio, R. & Takagi, M. (2004b). Progress in 2 mm glow discharge polymer mandrel development for NIF. Fusion Sci. Technol. 45, 165170.
Norimatsu, T., Nagai, K., Takea, T. & Yamanaka, T. (2001). Foam insulated direct-drive cryogenic target. In Inertial Fusion Science and Applications 2001 (Tanaka, K.A., Meyerhofer, D.D. & Meyer-ter-Vehn, J., Eds.), pp. 752756. Paris: Elsevier.
Olson, R E., Leeper, R.J., Dropinski, S.C., Mix, L.P., Rochau, G.A., Glenzer, S.H., Jones, O.S., Suter, L.J., Kaae, J.L., Shearer, C.H. & Smith, J.N. (2003). Time and spatially resolved measurements of x-ray burn through and reemission in Au and Au: Dy:Nd foils. Rev. Sci. Instr. 74, 21862190.
Orzechowski, T.J., Rosen, M.D., Kornblum, H.N., Porter, J.L., Suter, L.J., Thiessen, A.R. & Wallace, R.J. (1997). The Rosseland mean opacity of a mixture of gold and gadolinium at high temperatures. Phys. Rev. Lett. 78, 22732273.
Rickman, W.S. & Goodin, D.T. (2003). Cost modeling for fabrication of direct drive inertial fusion energy targets. Fusion Sci. Technol. 43, 353358.
Streit, J. & Schroen, D. (2003). Development of divinylbenzene foam shells for use as inertial fusion energy reactor targets. Fusion Sci. Technol. 43, 321326.
Wilson, D.C., Bradley, P.A., Hoffman, N.M., Swenson, F.J., Smitherman, D.P., Chrien, R.E., Margevicius, R.W., Thoma, D.J., Foreman, L.R., Hoffer, J.K., Goldman, S.R., Caldwell, S.E., Dittrich, T.R., Haan, S.W., Marinak, M.M., Pollaine, S.M. & Sanchez, J.J. (1998). The development and advantages of beryllium capsules for the national ignition facility. Phys. Plasmas 5, 19531959.
Woodworth, J. & Meier, W. (1995). Target production for Inertial Fusion Energy Livermore. CA: Lawrence Livermore National Laboratory, Document UCEL-ID-117396.

Keywords

Laser targets compensate for limitations in inertial confinement fusion drivers

  • J.D. KILKENNY (a1), N.B. ALEXANDER (a1), A. NIKROO (a1), D.A. STEINMAN (a1), A. NOBILE (a2), T. BERNAT (a3), R. COOK (a3), S. LETTS (a3), M. TAKAGI (a3) and D. HARDING (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed