Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T01:40:13.868Z Has data issue: false hasContentIssue false

Laser fusion with nonlinear force driven plasma blocks: Thresholds and dielectric effects

Published online by Cambridge University Press:  19 March 2009

H. Hora*
Affiliation:
Department of Theoretical Physics, University of New South Wales, Sydney, Australia
*
Address correspondence and reprint requests to: H. Hora, Department of Theoretical Physics, University of New South Wales, Sydney 2052, Australia. E-mail: h.hora@unsw.edu.au

Abstract

Anomalous interaction of picosecond laser pulses of terawatt to petawatt power is due to suppression of relativistic self-focusing if prepulses are cut-off by a contrast ratio higher than 108, resulting in quasi-neutral directed plasma blocks with deuterium tritium ion current densities above 1011 A/cm2. This is still not high enough for ignition of solid-state density deuterium tritium because the energy flux density E* has to be higher than the threshold of 4 ×108 J/cm2 obtained within the theory of Chu (1972). A revision of this evaluation shows a reduction of this threshold by a factor 20 if the later discovered inhibition factors for thermal conduction because of double layer effects as well as the shorter stopping lengths of the alpha particles due to collective effects are taken into account. Under these relaxed conditions, the parameters of nonlinear force generated blocks of dielectrically increased thickness for deuterium tritium ignition with directed ions of energies near the 80 keV resonances are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alfven, H. (1981). Cosmic Plasma. Dordrecht: Reidel.CrossRefGoogle Scholar
Atzeni, S. (1995). Thermonuclear burn performance of volume-ignited and centrally ignited bare deuterium-tritium microsphered. Jap. J. Appl. Phys. 34, 19861992.Google Scholar
Azechi, H., Jitsuno, T., Kanabe, T., Katayama, M., Mima, K., Miyanaga, N., Nakai, M., Nakai, S., Nakaishi, H., Nakatsuka, M., Nishiguchi, A., Norrays, P.A., Setsuhara, Y., Takagi, M. & Yamanaka, M. (1991). High-density compression experiments at ILE Osaka. Laser Part. Beams 9, 193207.CrossRefGoogle Scholar
Azizi, N., Hora, H., Miley, G.H., Malekynia, B., Ghoranneviss, M. & He, X. (2009). Threshold for laser driven block ignition for fusion energy from hydrogen Boron-11. Laser Part. Beams 27, 201206.CrossRefGoogle Scholar
Badziak, J., Kozlov, A.A., Makowksi, J., Parys, P., Ryc, L., Wolowski, J., Woryna, E. & Vankov, A.B. (1999). Investigation of ion streams emitted from plasma produced with a high-power picosecond laser. Laser Part. Beams 17, 323329.CrossRefGoogle Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2005). Generation of picosecond high-density ion fluxes by skin-layer laser-plasma interaction. Laser Part. Beams 23, 143148.CrossRefGoogle Scholar
Badziak, J., Glowacz, S., Hora, H., Jablonski, S. & Wolowski, J. (2006). Studies of laser driven generation of fast-density plasma blocks for fast ignition. Laser Part. Beams 24, 249254.CrossRefGoogle Scholar
Badziak, J., Glowacz, S., Jablonski, S., Pahys, P., Wolowski, J. & Hora, H. (2004). Production of ultrahigh ion current densities at skin layer subrelativistic laser-plasma interaction. Plasma Phys. Contr. Fusion 46, B541B555.CrossRefGoogle Scholar
Bagge, E. & Hora, H. (1974). Calculation of the reduced penetration depth of relativistic electrons in plasmas for nuclear fusion. Atomkernenergie 24, 143146.Google Scholar
Balescu, R. (1997). Statistical Dynamics. Singapore: World Scientific Publications.CrossRefGoogle Scholar
Basko, M.M. (1990). Volume ignition. Nucl. Fusion 30, 24432449.CrossRefGoogle Scholar
Basov, N.G. (1992). Comment on the history and prospects for inertial confinement fusion. In Laser Interaction and Related Plasma Phenomena (Miley, G.H. and Hora, H., Eds.). New York: Plenum Press.Google Scholar
Bell, M. (1979). Measurements of plasma rotation in Tokamak Lt-3. Nucl. Fusion 19, 3338.CrossRefGoogle Scholar
Biermann, L. (1951). Kometenschweife Und Solare Korpuskularstrahlung (Comet tails and solar corpuscular radiation). Zeitschrift F. Astrophys. 29, 247.Google Scholar
Bigot, B. (2006). Inertial fusion science in Europe. J. De Phys. 133, 38.Google Scholar
Bobin, J.L. (1974). Nuclear fusion reactions in fronts propagating in solid DT. In Laser Interaction and Related Plasma Phenomena. (Schwarz, H. and Hora, H., Eds.). New York: Plenum Press.Google Scholar
Boreham, B.W. & Hora, H. (1978). Debye length discrimination of nonlinear laser forces acting on electrons in tenuous plasmas. Phys. Rev. Lett. 42, 776779.CrossRefGoogle Scholar
Bret, A., Firpo, M.-C. & Deutsch, C. (2007). About the most unstable modes encountered in beam plasma interaction physics. Laser Part. Beams 25, 117120.CrossRefGoogle Scholar
Broad, W.J. (1988). Secret advance in nuclear fusion spurs a dispute among scientists. New York Times 137, March 21.Google Scholar
Campbell, E.M. (2005). High intensity laser-plasma interaction and applications to inertial fusion and high energy density physics. Ph.D. Thesis. Sydney: University of Western Sydney.Google Scholar
Cang, Y., Osman, F., Hora, H., Zhang, J., Badziak, J., Wolowski, J., Jungwirth, K., Rohlena, J. & Ullschmied, J. (2005). Computations for nonlinear force driven plasma blocks by picosecond laser pulses for fusion. J. Plasma Phys. 71, 3551.CrossRefGoogle Scholar
Chen, H. & Wilks, S.C. (2005). Evidence of enhanced effective hot electron temperatures in ultraintense laser-solid interaction due to reflexing. Laser Part. Beams 23, 411416.CrossRefGoogle Scholar
Chu, M.S. (1972). Thermonuclear reaction waves at high densities. Phys. Fluids 15, 412422.CrossRefGoogle Scholar
Cicchitelli, L., Elijah, J.S., Eliezer, S., Ghatak, K., Goldsworthy, M.P., Hora, H. & Lalousis, P. (1984). Pellet fusion agin calculations modified by electric double layers and by spin polarized nuclei. Laser Part. Beams 2, 467475.CrossRefGoogle Scholar
Cicchitelli, R., Hora, H. & Postle, R. (1990). Longitudinal field components of laser beams in vacuum. Phys. Rev A 41, 37273732.CrossRefGoogle ScholarPubMed
Cowan, T.E., Parry, M.D., Key, M.H., Dittmire, T.R., Hatchett, S.P., Henry, E.A., Mody, J.D., Moran, M.J., Pennington, D.M., Phillips, T.W., Sangster, T.C., Sefcik, J.A., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C, Young, P.E., Takahashi, Y., Dong, B., Fountain, W., Parnell, T., Johnson, J., Hunt, A.W. & Kuhl, T. (1999). High energy electrons, nuclear phenomena and heating in petawatt laser-solid experiments. Laser Part. Beams 17, 773783.CrossRefGoogle Scholar
Dean, S.O. (2008). The rational for and expanding inertial fusion energy program. J. Fusion Ener. 27, 149153.CrossRefGoogle Scholar
Deng, X., Tao, W. & Wang, R. (1982). Plasma Nucl. Fusion China 1, 187.Google Scholar
Deutsch, C., Bret, A., Firpo, C., Gremillet, L., Lefebvre, E. & Lifshitz, A. (2008). Onset of coherent electromagnetic structures in the relativistic electron beam deuterium-tritium fuel interaction for fast ignition concern. Laser Part. Beams 26, 157165.CrossRefGoogle Scholar
Einstein, A. (1916). Zur Quantentheorie Der Strahlung (About the quantum theory of radiation). Phys. Zeitschrift 18, 121128.Google Scholar
Eisenbarth, S., Rosmei, O.N., Shevelko, V.P., Blazsevic, A. & Hoffmann, D.H.H. (2007). Numerical simulations of the projectile ion charge difference in solid and gaseous stopping matter. Laser Part. Beams 25, 601612.CrossRefGoogle Scholar
Eliezer, S. & Hora, H. (1989). Double-layers in laser-produced plasmas. Phys. Rep. 172, 339407.CrossRefGoogle Scholar
Eliezer, S., Murakami, M. & Martinez-Val, J.-M. (2007). Equation of state and optimum compression in inertial fusion energy. Laser Part. Beams 25, 585592.CrossRefGoogle Scholar
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003/1-4.CrossRefGoogle ScholarPubMed
Evans, R.G. (2008). Ion heating due to ionization and recombination. Laser Part. Beams 26, 2740.CrossRefGoogle Scholar
Fälthammar, C.-G. (1988). Laboratory and near-earth space plasma as a key to the plasma universe. Laser Part. Beams 6, 437452.CrossRefGoogle Scholar
Ferguson, K. (1992). Stephen Hawking. New York: Baulkham Book.Google Scholar
Floux, F. (1990). High density and high temperature laser produced plasmas: neutron production in solid Deuterium laser created plasmas. In Laser Interaction and Related Plasma Phenomena (Schwarz, H. & Hora, H., Eds.). New York: Plenum Press.Google Scholar
Gabor, D. (1952). Wave theory of plasmas. Proc. Roy. Soc. London A 213, 73.Google Scholar
Ghahramani, N., Hora, H., Miley, G.H., Ghanaatian, M., Hooshmand, M., Philberth, K. & Osman, F. (2008). Magic numbers based on quark-like model is compared with the Boltzmann distribution model from nuclear abundance in the universe and low energy nuclear reactions. Phys. Essays 21, 200206.CrossRefGoogle Scholar
Ghoranneviss, M., Malekynia, B., Hora, H., Miley, G.H. & He, X. (2008). Inhibition factor reduces fast ignition threshold for laser fusion using nonlinear force driven block acceleration. Laser Part. Beams 26, 105111.CrossRefGoogle Scholar
He, X.-T. & Li, Y.-S. (1994). Laser interaction and related plasma. AIP Conf. Proc. 318, 334344.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosemej, P., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardes, D., Bimbot, R. & Fleurier, C. (1990). Energy losses of heavy ions in a plasma target. Phys. Rev. A 42, 23132317.CrossRefGoogle Scholar
Hora, H. (1957). Electromagnetic waves. In Media with Continuously Variable Refractive Index. Jenaer Jahrbuch: Publications of Carl Zeiss Jena.Google Scholar
Hora, H. (1969). Nonlinear confining and deconfining forces associated with interaction of laser radiation with plasma. Phys. Fluids 12, 182188.CrossRefGoogle Scholar
Hora, H. (1975). Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65, 882886.CrossRefGoogle Scholar
Hora, H. & Karger, F. (1977). A process and an apparatus for separating gas particles differing in mass by centrifugal forces. German Pat. No. 1.943.588 (Appl. 27.8.1969).Google Scholar
Hora, H. (1981). Physics of Laser Driven Plasmas. New Work: John Wiley.Google Scholar
Hora, H. (1983). Interpenetration burn for controlled inertial confinement fusion by nonlinear forces. Atomkernenergie 42, 710.Google Scholar
Hora, H. (1985). The transient electrodynamic forces at laser plasma interaction. Phys. Fluids 28, 37063707.CrossRefGoogle Scholar
Hora, H. (1991). Plasmas at High Temperature and Density. Heidelberg: Springer.Google Scholar
Hora, H. (2000). Laser Plasma Physics: Forces and the Nonlinearity Principle. Bellingham, WA: Spie-Books.Google Scholar
Hora, H. (2002). Fusion reactor with petawatt laser. German Patent Disclosure (Offenlegungsschrift) De 102 08 515 A1 (28 Feb 2002, Declassified 5 Sep 2002).Google Scholar
Hora, H. (2003). Skin-depth theory explaining anomalous picosecond-terawatt laser plasma interaction Ii. Czechosl. J. Phys. 53, 199217.CrossRefGoogle Scholar
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439449.CrossRefGoogle Scholar
Hora, H. (2006 a). From laser produced Debye layers in plasma to a theory of nuclear forces and quark-gluon plasmas. Laser Part. Beams 24, 3540.CrossRefGoogle Scholar
Hora, H. (2006 b). Smoothing and stochastic pulsation at high-power laser-plasma interaction. Laser Part. Beams 24, 455464.CrossRefGoogle Scholar
Hora, H. (2007 a). Klimakatastrophe Überwinden (Overcoming the Climatic Catastrophe). Regensburg: S. Roderer Verlag.Google Scholar
Hora, H. (2007 b). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3746.CrossRefGoogle Scholar
Hora, H., Azechi, H., Eliezer, S., Kitagawa, Y., Martincez-Val, J.-M., Mima, K., Murakami, M., Nishihara, K., Piera, M., Takabe, H., Yamanaka, M. & Yamanaka, T. (1997). Fast ignitor with long range DT ion energy deposition leading to volume ignition. In Laser Interaction and Related Plasma Phenomena (Miley, G.H. & Campbell, E.M., Eds.). Woodbury, NY: American Institute of Physics.Google Scholar
Hora, H., Azechi, H., Kitagawa, Y., Mima, K., Murakami, M., Nakai, S., Nishihara, K., Takabe, H., Yamanaka, C., Yamanaka, M. & Yamanaka, T. (1998). Measured laser fusion gains reproduced by self-similar volume compression and volume ignition for NIF conditions. J. Plasma Phys. 60, 743760.CrossRefGoogle Scholar
Hora, H., Badziak, J., Read, M.N., Li, Y.-T., Liang, T.-J., Liu, H., Sheng, Z.-M., Zhang, J., Osman, F., Miley, G.H., Zhang, W., He, X., Peng, H., Glowacz, S., Jablonski, S., Wolowski, J., Skladanowski, Z., Jungwirth, K., Rohlena, K. & Ullschmied, J. (2007). Fast ignition by laser driven particle beams of very high intensity. Phys. Plasmas 14, 072701-1/072701-7.CrossRefGoogle Scholar
Hora, H., Badziak, J., Boody, F., Höpfl, R., Jungwirth, K., Kralikova, B., Kraska, J., Laska, L., Parys, P., Perina, P., Pfeifer, K. & Rohlena, J. (2002). Effects of picosecond and Ns laser pulses for giant ion source. Opt. Commun. 207, 333338.CrossRefGoogle Scholar
Hora, H. & Ghatak, A.K. (1985). New electrostatic resonance driven by laser-radiation at perpendicular incidence in superdense plasmas. Phys. Rev. A31, 34733476.CrossRefGoogle Scholar
Hora, H., Lalousis, P. & Eliezer, S. (1984). Analysis of the inverted double layers in nonlinear force produced cavitons at laser-plasma interaction. Phys. Rev. Lett. 53, 16501652.CrossRefGoogle Scholar
Hora, H., Malekynia, B., Ghoranneviss, M., Miley, G.H. & He, X. (2008). Twenty times lower ignition threshold for laser driven fusion using collective effects and the inhibition factor. Appl. Phys. Lett. 93, 011101/1011101/3.CrossRefGoogle Scholar
Hora, H., Min, G., Eleizer, P., Lalousis, P., Pease, R.S. & Szichman, H. (1989). On surface tension in plasmas. IEEE Trans. Plasma Sc. 17, 284289.CrossRefGoogle Scholar
Hora, H. & Ray, P.S. (1978). Increased nuclear fusion yields of inertial confined DT plasma due to reheat. Zeitschrift F. Naturforschung 33a, 890894.CrossRefGoogle Scholar
Hora, H. & Wang, L. (2001). Contributed Paper To Summit On Plasma Physics, Islamabad Feb. (Organized By Hamid Saleem).Google Scholar
Imasaki, K. & Li, D. (2008). An approach of laser induced nuclear fusion. Laser Part. Beams 26, 38.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Kalal, M., Martinkovfa, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2008). Pals laser energy transfer into solid targets and its dependence on the lens focal point position with respect to the target surface. Laser Part. Beams 26, 189196.CrossRefGoogle Scholar
Kato, Y., Mima, K., Miyanaga, N., Arinaga, S., Kitagawa, Y., Nakatsuka, M. & Yamanaka, C. (1984). Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys. Rev. Lett. 53, 10571060.CrossRefGoogle Scholar
Kerns, J.R., Rogers, W.C. & Clark, J.G. (1972). Penetration of terawatt electron beams in polyethylene. Bull. Am. Phys. Soc. 17, 629.Google Scholar
Keilhacker, M. (1999). High fusion performance from deuterium-tritium plasma in jet. Nucl. Fusion 39, 209221.CrossRefGoogle Scholar
Kirkpatrick, R.C. & Wheeler, J.A. (1981). Volume ignition for inertial confinement fusion. Nucl. Fusion 21, 398.Google Scholar
Klimo, O. & Limpouch, J. (2006). Particle simulation of acceleration of quasineutral plasmas blocks by short laser pulses. Laser Part. Beams 24, 107112.CrossRefGoogle Scholar
Kodama, R., Norreys, P.A., Mima, K. & Dangor, A.E. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nat. 412, 798802.CrossRefGoogle ScholarPubMed
Kulsrud, R. (1983). Book Review: Hannes Alfven. Phys. Today 34, 56.Google Scholar
Lackner, K., Colgate, S., Johnson, N.L., Kirkpatrick, R.C., Menikoff, R. & Petschek, A.G. (1994). Equilibrium ignition for ICF capsules. In Laser Interaction and Related Plasma Phenomena (Miley, G.H., Ed.). New York: American Institute of Physics.Google Scholar
Lalousis, P. & Hora, H. (1983). First direct electron and ion fluid computation of high electrostatic fields in dense inhomogeneous plasmas with subsequent nonlinear laser interaction. Laser Part. Beams 1, 283304.CrossRefGoogle Scholar
Laska, L., Badziak, J., Gammino, S., Jungwirth, K., Kaspaczuk, A., Krasa, J., Krousky, E., Kubes, P., Parys, P., Pfeifer, M., Pisarcyk, T., Rohlena, A.K., Rosinski, M., Ryc, L., Skala, J., Torrisi, L., Ullschmied, J., Velyhan, J. & Wolowski, J. (2007). Laser Part. Beams 25, 549556.CrossRefGoogle Scholar
Lawrence, V.F. (1978). Momentum transfer of laser radiation in inhomogeneous dielectrics. Ph.D. Thesis. Sydney: University of New South Wales.Google Scholar
Ledingham, K.W.D., Spencer, I., Mccanny, T., Singhal, R.P., Santala, M.I.K., Clark, E., Watts, I., Beg, F.N., Zepf, M., Krushelnik, K., Tatarakis, M., Dangor, A.E., Norreys, P.A., Allott, R., Neely, D., Clark, R.J., Machacek, A.C., Wark, J.S., Cresswell, A.J., Sanderson, D.C.W. & Magill, J. (2002). Photonuclear physics when a multiterawatt laser pulse interacts with solid targets. Phys. Rev. Lett. 84, 899902.CrossRefGoogle Scholar
Leemans, W.P., Rodgers, D., Castravas, P.E., Geddes, C.G.R., Fubiani, G., Esarey, E., Shadwick, B.A., Donahue, R. & Smith, A. (2001). Gamma-neutron activation experiments using laser wakefield accelerators. Phys. Plasmas 8, 25102516.CrossRefGoogle Scholar
Lifshitz, E.M. & Pitaevski, A.A. (1961). Physical Kinetcs. Oxford: Pergamon Press.Google Scholar
Limpouch, J., Psikal, J., Andreev, A.A., Platinov, K. Yu. & Kawata, S. (2008). Enhanced laser ion acceleration from mass-limited targets. Laser Part. Beams 26, 225234.CrossRefGoogle Scholar
Lindl, J.D. (2005). The Edward Teller medal lecture: The evolution toward indirect drive and two decades of progress toward ignition and burn, In Edward Teller Lectures: Laser And Inertial Fusion Energy (Hora, H. & Miley, G.H., Eds.). London: Imperial College Press.Google Scholar
Magill, I., Schwoerer, H., Ewald, F., Galy, F., Schenkel, R. & Sauerbrey, R. (2003). Terawatt laser pulses for transmutation of long lived nuclear waste. Appl. Phys. B 77, 387392.CrossRefGoogle Scholar
Malekynia, M., Hora, H., Ghoranneviss, M. & Miley, G.H. (2009). Collective alpha particle stopping for reduction of the threshold for laser fusion using nonlinear force driven plasma blocks. Laser Part. Beams 27, 233241.CrossRefGoogle Scholar
Manheimer, W. & Colombant, D. (2007). Effects of viscosity in modeling laser fusion implosions. Laser Part. Beams 25, 541548.CrossRefGoogle Scholar
Martinez-Val, J.-M., Eliezer, S. & Piera, M. (1994). Volume ignition for heavy-ion inertial fusion. Laser Part. Beams 12, 681717.CrossRefGoogle Scholar
Miley, G.H., Hora, H., Cang, Y., Osman, F., Badziak, J., Wolowski, J., Sheng, Z.-M., Zhang, J., Zhang, W.-Y. & He, X.-T. (2008). Block ignition inertial confinement fusion (ICF) for space propulsion. Am. Instit. Aeronaut. Astronaut. J. http://pdf.aiaa.org/preview/CDReadyMJPC08_1874/PV2008_4612.pdf.Google Scholar
Miley, G.H., Hora, H., Osman, F., Evans, P. & Toups, P. (2005). Single event laser fusion using ns MJ laser pulses. Laser Part. Beams 23, 453460.CrossRefGoogle Scholar
Moses, E., Miller, G.H. & Kauffman, R.L. (2006). The ICF status and plans in the United States. J. De Physique 133, 916.Google Scholar
Mourou, G. & Tajima, T. (2002). Ultraintense lasers and their applications. In Inertial Fusion Science And Applications 2001 (Tanaka, V.R., Meyerhofer, D.D. & Meyer-Ter-Vehn, J., Eds.) Paris: Elsevier.Google Scholar
Nakamura, T., Mima, K., Sakagami, H., Jahozaki, T. & Nagatomo, H. (2008). Generation and confinement of high energy electrons generated by irradiation of ultra-intense short laser pulses onto cone targets. Laser Part. Beams 26, 207212.CrossRefGoogle Scholar
Niu, H.Y., He, X.T., Qiao, B. & Zhou, C.T. (2008). Resonant acceleration of electrons by intense circular polarization. Laser Part. Beams 26, 5159.CrossRefGoogle Scholar
Nuckolls, J.L. & Wood, L. (2002). Future of Inertial Fusion Energy. http://www.ntis.gov.Google Scholar
Nuckolls, J.H. & Wood, L. (2005). In Edward Teller Lectures. London: Imperial College Press.Google Scholar
Nuckolls, J.H. (1992). Edward Teller medal: Acceptance remarks. In Laser Interaction and Related Plasma Phenomena (Miley, G.H. & Hora, H., Eds.). New York: Plenum Press.Google Scholar
Nuckolls, J.H. (2005). Edward Teller medal: Acceptance remarks. In Edward Teller Lectures (Hora, H. & Miley, G.H., Eds.). London: Imperial College Press.Google Scholar
Osterberg, H. (1958). Propagation of electromagnetic waves in inhomogeneous media. J. Opt. Soc. Am. 48, 513519.CrossRefGoogle Scholar
Ray, P.S. & Hora, H. (1977 a). Laser Interaction and Related Plasma Phenomena (Schwarz, H. & Hora, H., Eds.). New York: Plenum Press.Google Scholar
Ray, P.S. & Hora, H. (1977 b). On the thermalization of energetic charged particles in fusion plasma with quantum electrodynamic considerations. Zeitschrift F. Naturforschung 31a, 538543.CrossRefGoogle Scholar
Rayleigh, Lord (1880). Propagation of waves in inhomogeneous media. Proc. Roy. Soc. London 11, 51.Google Scholar
Razumova, K.A. (1984). Results from T-7, T-10, and Tm-4 Tolamaks. Plasma Phys. 26, 37.Google Scholar
Roth, M., Brambrink, E., Audebert, B., Blazevic, A., Clarke, R., Cobble, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.CrossRefGoogle Scholar
Sauerbrey, R. (1996). Acceleration of femtosecond laser produced plasmas. Phys. Plasmas 3, 47124716.CrossRefGoogle Scholar
Schäfer, H.P. (1986). On some properties of axicons. Appl. Phys. B 39, 18.CrossRefGoogle Scholar
Schlick, M. (1904). Über Die Reflektion Von Licht In Einer Inhomogenen Schicht (About There Election of Lighting an Inhomogeneous Layer). Ph.D. Dissertation. Berlin: University of Berlin.Google Scholar
Schlüter, A. (1950). Dynamik Des Plasmas – I: Grundgleichungen, Plasma. In Gekreutzten Feldern (Dynamics of plasmas–1: Basic equations. Plasmas in crossed fields). Zeitschirft F. Naturforschung A 5, 7278.CrossRefGoogle Scholar
Sigmar, D.J., Clarke, J.F., Neidigh, R.V. & Vandersluis, K.L. (1974). Hot-ion distribution in Oak Ridge Tokamak. Phys. Rev. Lett. 33, 13761379.CrossRefGoogle Scholar
Soures, J.M., Mccrory, R.L., Vernon, C.P., Babushki, A., Bahr, R.E., Boehli, T.R., Boni, R., Bradlay, D.K., Brown, D.L., Craxton, R.S., Delettrez, J.A., Donaldson, W.R., Epstein, R., Jaanimagi, P.A., Jacobs, S.D., Kearney, K., Keck, R.L., Kelly, J.H., Kessler, T.J., Kremes, R.L., Knauaer, J.P., Kumpan, S.A., Letzring, S.A., Lonobile, D.J., Loucks, S.J., Lund, L.D., Marshall, F.J., Mckenty, P.W., Meyerhofer, D.D., Morse, S.F.B., Okishev, A., Papernov, S., Pien, G., Seka, W., Short, R., Shoup, M.J. Iii, Skeldon, S., Skoupski, S., Schmid, A.W., Smith, D.J., Swmales, S., Wittman, M. & Yaakobi, B. (1996). Direct-Drive Laser-Fusion Experiments With The Omega, 60-Beam, >40 Kj, Ultraviolet Laser System. Phys. Plasma 3, 21082112.CrossRefGoogle Scholar
Spitzer, L. (1956). Physics of Fully Ionized Gases. New York: Interscience.Google Scholar
Stepanek, J. (1981). Charged particle loss rates and ranges in plasma. In Laser Interaction and Related Plasma Phenomena (Schwarz, H., Hora, H., Lubin, M. & Yaakobi, B., Eds.). New York: Plenum Press.Google Scholar
Storm, E., Lindl, J.D., Campbell, E.M., Bernat, T.P., Coleman, I.W., Emmett, J.L., Hogan, W.J., Horst, Y.T., Krupke, W.F. & Lowdermilk, W.H. (1988). Progress In Laboratory High-Gain ICF: Progress For The Future Livermore: LLNL Report 47312 (August).Google Scholar
Szatmari, S. & Schäfer, F.P. (1988). Simplified laser system for the generation of 60 fs pulses at 248 nm. Opt. Commun. 68, 196201.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.N., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition of high-gain with ultrapowerfull lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Tan, W. & Min, G. (1985). Thermal flux limitation and thermal conduction inhibition in laser plasma. Laser Part. Beams 3, 243250.Google Scholar
Teller, E. (2001). Memoirs. Cambridge, MA: Perseus Publishing.Google Scholar
Torrisi, I., Margarone, D., Laska, L., Krasa, J., Velyhan, A., Pfeifer, M., Ullscmied, J. & Ryc, L. (2008). Self-focusing effect in au-target induced by high power pulses laser at pals. Laser Part. Beams 26, 379388.CrossRefGoogle Scholar
Weibel, S. (1958). Forces on electrons in standing electromagnetic waves. J. Electr. Contr. 5, 435.Google Scholar
Von Weizsäcker, C.F. (1970). The limits of physics. Keynote, Meeting of the German Physical Society Munich, Verhandl, DPG 22, 215.Google Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Landgon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.CrossRefGoogle ScholarPubMed
Winterberg, F. (2008). Laser for inertial confinement fusion driven by high explosives. Laser Part. Beams 26, 127135.CrossRefGoogle Scholar
Yazdani, E., Cang, Y., Sadaghi-Bonaz, R. & Hora, H. (2009). Layers from initial Rayleigh density profiles by directed nonlinear force driven plasma blocks for alternative fast ignition. Laser Part. Beams 27, 149156.CrossRefGoogle Scholar
Young, F., Whitlock, R.A., Decoste, R., Ripin, B.H., Hagel, D.J., Stamper, J.A., Mcmahon, J.M. & Bodner, S.F. (1977). Laser produced plasma energy gtransport through plastic films. Appl. Phys. Lett. 30, 4547.CrossRefGoogle Scholar
Zhang, P., He, J.T., Chen, D.B., Li, Z.H., Zhang, Y., Wong, L., Li, Z.H., Feng, B.H., Zhang, D.X., Tang, X.W. & Zhang, J. (1998). X-ray emission from ultraintense-ultrashort laser irradiation. Phys. Rev. E 57, 37463752.CrossRefGoogle Scholar
Zhou, C.T., Yu, M.Y. & He, X.T. (2007). Electron acceleration by high current density electron bunches in plasmas. Laser Part. Beams 25, 313320.CrossRefGoogle Scholar
Zhou, C.T., He, X.T. &Yu, M.Y. (2008). Laser-produced energetic electron transport in overdense plasma by wire guiding. Laser Part. Beams Appl. Phys. Lett. 92, 151502-1/3.Google Scholar