Skip to main content Accessibility help

Langmuir probe studies of laser ablated ruby plasma and correlation with pulsed laser deposited ruby thin film properties

  • Satchi Kumari (a1) and Alika Khare (a1)


In the present paper, measurement of various plasma parameters during pulsed laser deposition of ruby thin film on quartz substrate is reported. The variation of electron temperature and ion density with laser fluence and ambient pressure is recorded via Langmuir probe technique. The structural and optical properties of ruby thin films were analyzed using photo-luminescence and atomic force microscopy, and then correlated with the plasma parameters to find optimum conditions for deposition of high quality ruby thin film.


Corresponding author

Address correspondence and reprint requests to: Alika Khare, Laser and Photonics Laboratory, Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039, India. E-mail:


Hide All
Aizawa, H., Ohishi, N., Ogawa, S., Katsumata, T. & Komuro, S. (2002). Fabrication of ruby sensor probe for the fiber-optic thermometer using fluorescence decay. Rev. Sci. Instrum. 73, 36563658.
Aizawa, H., Shibasaki, M., Komuro, S., Miyazaki, Y. & Katsumata, T. (2009). Fabrication of ruby thin film for temperature indicator application. International Conference on Electrical Engineering.
Bigelow, M.S., Lepeshkin, N.N. & Boyd, R.W. (2003). Observation of ultraslow light propagation in a ruby crystal at room temperature. Phy. Rev. Lett. 90, 1139031.
Cronemeyer, D.C. (1966). Optical absorption characteristics of pink ruby. J. Opt. Soc. Am. 56, 17031706.
Cracium, V., Amirhaghi, S., Cracium, D., Elders, J., Gardeniers, J.G.E. & Boyd, I.W. (1995). Effects of laser wavelength and fluence on the growth of ZnO thin films by pulsed laser deposition. Appl. Surf. Sci. 86, 99106.
Duan, W., Paiva, Renata M., Wentzcovitch, M. & Fazzio, A. (1997). Ruby's optical transitions: effects of pressure-induced phase transformation. Mat. Res. Soc. Symp. Proc. 499, 275.
Gibson, U.J. & Chernuschenko, M. (1999). Ruby films as surface temperature and pressure sensors. Opt. Express 4, 443448.
Gao, F., Xu, J., Zhang, G., Bo, F. & Liu, H. (2008). Paraxial energy transport of a focused Gaussian beam in ruby with non-degenerate two-wave coupling like mechanism. Appl. Phys. Lett. 92, 021121.
Gurlui, S., Agop, M., Nica, P., Ziskind, M. & Focsa, C. (2008). Experimental and theoretical investigation of a laser-produced aluminum plasma. Phys. Rev. E 78, 026405.
Harilal, S.S., Bindhu, C.V., Issac, R.C., Nampoori, V.P.N. & Vallabhan, C.P.G. (1997). Electron density and temperature measurement in a laser produced carbon plasma. J. Appl. Phys. 82, 21402146.
Harilal, S.S., Bindhu, C.V., Nampoori, V.P.N. & Vallabhan, C.P.G. (1998). Influence of ambient gas on the temperature and density of laser produced carbon plasma. Appl. Phys. Lett. 72,167169.
Kumari, S. & Khare, A. (2013). Optical and structural characterization of pulsed laser deposited ruby thin films for temperature sensing application. Appl. Surf. Sci. 265, 180.
Kumari, S. & Khare, A. (2011). Epitaxial ruby thin film based photonic sensor for temperature measurement. Rev. Sci. Instrum. 82, 066106.
Kamlesh, A. & Khare, A. (2005). Low-energy low-divergence pulsed indium atomic beam by laser ablation. Laser Part. Beams 24, 47.
Kamlesh, A. & Khare, A. (2006). Sculpted pulsed indium atomic beams via selective laser ablation of thin film. Laser Part. Beams 24, 469.
Lorusso, A., Fasano, V., Perrone, A. & Lovchinov, K. (2001). Y thin films grown by pulsed laser ablation. J. Vac. Sci. Technol. A 29, 031502.
Maiman, T.H. (1960). Stimulated optical radiation in ruby. Nat. 187, 493.
Mostako, A.T.T. & Khare, A. (2012). Molybdenum thin films via pulsed laser deposition technique for first mirror application. Laser Part. Beams 30, 559567.
Nelson, D.F. & Sturge, M.D. (1965). Relation between absorption and emission in the region of the R lines of ruby. Phy. Rev. A 137, 1117.
Nica, P., Agop, M., Gurlui, S. & Focsa, C. (2010). Oscillatory Langmuir probe ion current in laser-produced plasma expansion. EPL 89, 65001.
Powell, R.C. (1998). Physics of Solid State Laser Engineering. Washington, DC: AIP Press.
Ragan, D.D., Gustavsen, R. & Schiferl, D. (1992). Calibration of the ruby R1 and R2 fluorescence shifts as a function of temperature from 0 to 600 K. J. Appl. Phys. 72, 55395544.
Shukla, G. & Khare, A. (2010). Spectroscopic studies of laser ablated ZnO plasma and correlation with pulsed laser deposited ZnO thin film properties. Laser Part. Beams 28, 149155.
Sankur, H. (1986). Properties of thin PbF2 films deposited by cw and pulsed laser assisted evaporation. Appl. Opt. 25, 19621965.
Yu, N., Wen, Q., Clarke, D.R., Mclntyre, P.C., Kung, H., Nastasi, M., Simpson, T.W., Mitchell, I.V. & Li, D. (1995). Formation of iron or chromium doped epitaxial sapphire thin films on sapphire substrates. J. Appl. Phys. 78, 54125421.
Wen, Q., Clarke, D.R., Yu, N. & Nastasi, M. (1995). Epitaxial regrowth of ruby on sapphire for an integrated thin film stress sensor. Appl. Phys. Lett. 66, 293295.
Wang, Y.L., Chen, C., Ding, X.C., Chu, L.Z., Deng, Z.C., Liang, W.H., Chen, J.Z. & FU, G.S. (2011). Nucleation and growth of nanoparticles during pulsed laser deposition in an ambient gas. Laser Part. Beams 29, 105111.
Wolowski, J., Badziak, J., Czarnecka, A., Parys, P., Pisarek, M., Rosinski, Turan R. & Yerci, S. (2007). Application of pulsed laser deposition and laser-induced ion implantation for formation of semiconductor nano-crystallites. Laser Part. Beams 25, 6569.
Wang, C., Cheng, B.L., Wang, S.Y., Lu, H.B., Zhou, Y.L., Chen, Z.H. & Yang, G.Z. (2005). Effects of oxygen pressure on lattice parameter, orientation, surface morphology and deposition rate of (Ba0.02Sr0.98)TiO3 thin films grown on MgO substrate by pulsed laser deposition. Thin Solid Films 485, 8289.


Langmuir probe studies of laser ablated ruby plasma and correlation with pulsed laser deposited ruby thin film properties

  • Satchi Kumari (a1) and Alika Khare (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed