Skip to main content Accessibility help
×
Home

Interaction of annular-focused laser beams with solid targets

  • N.E. Andreev (a1), M.E. Povarnitsyn (a1), M.E. Veysman (a1), A.YA. Faenov (a1), P.R. Levashov (a1), K. V. Khishchenko (a1), T.A. Pikuz (a1), A.I. Magunov (a2), O.N. Rosmej (a3), A. Blazevic (a3), A. Pelka (a4), G. Schaumann (a4), M. Schollmeier (a4) and M. Roth (a4)...

Abstract

The two-temperature, 2D hydrodynamic code Hydro–ELectro–IOnization–2–Dimensional (HELIO2D), which takes into account self-consistently the laser energy absorption in a target, ionization, heating, and expansion of the created plasma is elaborated. The wide-range two-temperature equation of state is developed and used to model the metal target dynamics from room temperature to the conditions of weakly coupled plasma. The simulation results are compared and demonstrated a good agreement with experimental data on the Mg target being heated by laser pulses of the nanosecond high-energy laser for heavy ion experiments (NHELIX) at Gesellschaft fur Schwerionenforschung. The importance of using realistic models of matter properties is demonstrated.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Interaction of annular-focused laser beams with solid targets
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Interaction of annular-focused laser beams with solid targets
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Interaction of annular-focused laser beams with solid targets
      Available formats
      ×

Copyright

Corresponding author

Address correspondence and reprint requests to: M.E. Povarnitsyn, Joint Institute for High Temperatures RAS, Izhorskaya 13 Bldg 2, Moscow 125412, Russia. E-mail: povar@ihed.ras.ru

References

Hide All
Agranat, M.B., Andreev, N.E., Ashitkov, S.I., Veysman, M.E., Levashov, P.R., Ovchinnikov, A.V., Sitnikov, D.S., Fortov, V.E. & Khishchenko, K.V. (2007). Determination of the transport and optical properties of a nonideal solid-density plasma produced by femtosecond laser pulses. JETP Lett. 85, 271276.
Andreev, N.E., Beigman, I.L., Kostin, V.V., Veisman, M.E. & Urnov, A.M. (1998). Ionization processes by intense laser pulse interaction with solid targets. Laser Opt. ’98: Superstrong Laser Fields and Applications, ’25, 3683, 2532.
Andreev, N.E., Veysman, M.E., Efremov, V.P. & Fortov, V.E. (2003). Generation of dens warm plasma by intense subpicosecond laser pulses. High Temp. 41, 594.
Brabetz, C., Busold, S., Cowan, T., Deppert, O., Jahn, D., Kester, O., Roth, M., Schumacher, D. & Bagnoud, V. (2015). Laser-driven ion acceleration with hollow laser beams. Phys. Plasmas 22, 013105.
Brambrink, E., Roth, M., Blazevic, A. & Schlegel, T. (2006). Modeling of the electrostatic sheath shape on the rear target surface in short-pulse laser-driven proton acceleration. Laser Part. Beams 24, 163168.
Faenov, A., Magunov, A., Pikuz, T., Skobelev, I.Y., Gasilov, S., Stagira, S., Calegari, F., Nisoli, M., de Silvestri, S., Poletto, L., Villoresi, P. & Andreev, A. (2007). X-ray spectroscopy observation of fast ions generation in plasma produced by short low-contrast laser pulse irradiation of solid targets. Laser Part. Beams 25, 267275.
Faenov, A.Y., Pikuz, S.A., Erko, A.I., Bryunetkin, B.A., Dyakin, V.M., Ivanenkov, G.V., Mingaleev, A.R., Pikuz, T.A., Romanova, V.M. & Shelkovenko, T.A. (1994). High-performance X-ray spectroscopic devices for plasma microsources investigations. Phys. Scr. 50, 333338.
Hoffmann, D., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.
Khishchenko, K. (2004). The equation of state for magnesium at high pressures. Tech. Phys. Lett. 30, 829831.
Khishchenko, K.V. (2008). Equation of state and phase diagram of tin at high pressures. J. Phys.: Conf. Ser. 121, 022025.
Magunov, A., Faenov, A., Skobelev, I., Pikuz, T., Dobosz, S., Schmidt, M., Perdrix, M., Meynadier, P., Gobert, O., Normand, D., Stenz, C., Bagnoud, V., Blasco, F., Roche, J., Salin, F. & Sharkov, B. (2003). X-ray spectra of fast ions generated from clusters by ultrashort laser pulses. Laser Part. Beams 21, 7379.
More, R.M. (1982). Applied Atomic Collision Physics. Academic Press.
Ortner, A., Faik, S., Schumacher, D., Basko, M., Blazevic, A., Busold, S., Bedacht, S., Cayzac, W., Frank, A., Kraus, D., Rienecker, T., Schaumann, G., Tauschwitz, A., Wagner, F. & Roth, M. (2015). A novel double hohlraum target to create a moderately coupled plasma for ion stopping experiments. Nucl. Instrum. Meth. Phys. Res. B: Beam Interact. Mater. At. 343, 123131.
Peaceman, D.W. & Rachford, H.H.J. (1955). The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3, 2841.
Povarnitsyn, M.E., Andreev, N.E., Apfelbaum, E.M., Itina, T.E., Khishchenko, K.V., Kostenko, O.F., Levashov, P.R. & Veysman, M.E. (2012 a). A wide-range model for simulation of pump-probe experiments with metals. Appl. Surface Sci. 258, 94809483.
Povarnitsyn, M.E., Andreev, N.E., Levashov, P.R., Khishchenko, K.V., Kim, D.A., Novikov, V.G. & Rosmej, O.N. (2013). Laser irradiation of thin films: Effect of energy transformation. Laser Part. Beams 31, 663671.
Povarnitsyn, M.E., Andreev, N.E., Levashov, P.R., Khishchenko, K.V. & Rosmej, O.N. (2012 b). Dynamics of thin metal foils irradiated by moderate-contrast high-intensity laser beams. Phys. Plasmas 19, 023110.
Povarnitsyn, M.E., Itina, T.E., Sentis, M., Levashov, P.R. & Khishchenko, K.V. (2007). Material decomposition mechanisms in femtosecond laser interactions with metals. Phys. Rev. B 75, 235414.
Rosmej, F., More, R., Rosmej, O., Wieser, J., Borisenko, N., Shevelko, V., Geissel, M., Blazevic, A., Jacoby, J., Dewald, E., Roth, M., Brambrink, E., Weyrich, K., Hoffmann, D., Golubev, A., Turtikov, V., Fertman, A., Sharkov, B., Faenov, A., Pikuz, T., Magunov, A. & Skobelev, I. (2002). Methods of charge-state analysis of fast ions inside matter based on their x-ray spectral distribution. Laser Part. Beams 20, 479483.
Roth, M., Stöckl, C., Süß, W., Iwase, O., Gericke, D.O., Bock, R., Hoffmann, D.H.H., Geissel, M. & Seelig, W. (2000). Energy loss of heavy ions in laser-produced plasmas. EPL (Europhys. Lett.) 50, 28.
Schaumann, G., Schollmeier, M., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F., Faenov, A., Pikuz, T., Tsigutkin, K., Maron, Y., Tahir, N. & Hoffmann, D. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the nhelix laser system at gsi. Laser Part. Beams 23, 503512.
Skobelev, I.Y., Faenov, A.Y., Bryunetkin, B.A., Dyakin, V.M., Pikuz, T.A., Pikuz, S.A., Shelkovenko, T.A. & M., V. (1995). Investigations of radiative properties of plasma sources by image X-ray spectroscopic methods. Sov. Phys. JETP 81, 692.
Veysman, M., Cros, B., Andreev, N.E. & Maynard, G. (2006). Theory and simulation of short intense laser pulses propagation in capillary tubes with wall ablation. Phys. Plasma 13, 053114.
Veysman, M.E., Agranat, M.B., Andreev, N.E., Ashitkov, S.I., Fortov, V.E., Khishchenko, K.V., Kostenko, O.F., Levashov, P.R., Ovchinnikov, A.V. & Sitnikov, D.S. (2008). Femtosecond optical diagnostics and hydrodynamic simulation of ag plasma created by laser irradiation of a solid target. J. Phys. B: At. Mol. Opt. Phys. 41, 125704.
Yu, J., Jin, X., Zhou, W., Zhang, B., Zhao, Z., Cao, L., Li, B., Gu, Y., Zhan, R. & Najmudin, Z. (2013). Influence of the initial size of the proton layer in sheath field proton acceleration. Laser Part. Beams 31, 597605.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed