Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-04T23:44:42.886Z Has data issue: false hasContentIssue false

Highly efficient X-band relativistic twistron

Published online by Cambridge University Press:  09 September 2016

E.M. Totmeninov*
Affiliation:
Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk 634055, Russia
I.V. Pegel
Affiliation:
Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk 634055, Russia Tomsk National Research Polytechnic University, Tomsk 634050, Russia
V.P. Tarakanov
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia National Research Nuclear University MEPhI, Moscow 115409, Russia
*
Address correspondence and reprint requests to: E.M. Totmeninov, Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk 634055, Russia. E-mail: totm@lfe.hcei.tsc.ru

Abstract

The paper proposes a new scheme of high-power microwave oscillator of twistron type using a moderately relativistic high-current electron beam. In numerical experiment using axisymmetric version of the completely electromagnetic PiC code KARAT, a 56% conversion efficiency of electron beam power to electromagnetic radiation was demonstrated. With 340 kV accelerating voltage, 3.3 kA electron beam current, and 2.2 T guiding magnetic field strength, the simulated microwave power was 630 MW at 9.7 GHz. The “electronic efficiency” of the source reaches 66%.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Denisov, G.G., Lukovnikov, D.A. & Samsonov, S.V. (1995). Resonant reflectors for free electron masers. Int. J. Infrared Millim. Waves 16, 745752.Google Scholar
Eltchaninov, A.A., Korovin, S.D., Rostov, V.V., Pegel, I.V., Mesyats, G.A., Rukin, S.N., Shpak, V.G., Yalandin, M.I. & Ginzburg, N.S. (2003). Production of short microwave pulses with a peak power exceeding the driving electron beam power. Laser Part. Beams 21, 187196.Google Scholar
Kitsanov, S.A., Klimov, A.I., Korovin, S.D., Kurkan, I.K., Pegel, I.V. & Polevin, S.D. (2002). Vircator with electron beam premodulation built around a high-current pulsed-periodic accelerator. Tech. Phys. 47, 595603.Google Scholar
Korovin, S.D., Kurkan, I.K., Loginov, S.V., Pegel, I.V., Polevin, S.D., Volkov, S.N. & Zherlitsyn, A.A. (2003). Decimeter-band frequency-tunable sources of high-power microwave pulses. Laser Part. Beams 21, 175185.Google Scholar
Korovin, S.D., Kurkan, I.K., Rostov, V.V. & Totmeninov, E.M. (1999). Relativistic backward wave oscillator with a discrete resonance reflector. Radiophys. Quantum Electron. 42, 10471054.Google Scholar
Kovalev, N.F., Kolchugin, B.D. & Krotova, Z.N. (1975). Ultrarelativistic twistron. Radiotech. Elektron. 20, 26362637.Google Scholar
Mesyats, G.A., Korovin, S.D., Gunin, A.V., Gubanov, V.P., Stepchenko, A.S., Grishin, D.M., Landl, V.F. & Alekseenko, P.I. (2003). Repetitively pulsed high-current accelerators with transformer charging of forming lines. Laser Part. Beams 21, 197209.Google Scholar
Pegel, I.V. (1996). Particle-in-cell simulation of stationary processes in a relativistic carcinotron. Russ. Phys. J. 39, 12101228.Google Scholar
Tarakanov, V.P. (1992). User's Manual for Code KARAT. VA, USA: Berkeley Research Associates, Inc. Google Scholar
Totmeninov, E.M., Kitsanov, S.A. & Vykhodtsev, P.V. (2011). Repetitively pulsed relativistic Cherenkov microwave oscillator without a guiding magnetic field. IEEE Trans. Plasma Sci. 39, 11501153.Google Scholar
Totmeninov, E.M., Klimov, A.I., Kurkan, I.K., Polevin, S.D. & Rostov, V.V. (2008). Repetitively pulsed relativistic BWO with enchanced mechanical tunability. IEEE Trans. Plasma Sci. 36, 26092612.Google Scholar