Skip to main content Accessibility help

High energy electron radiography scheme with high spatial and temporal resolution in three dimension based on a e-LINAC

  • Y. Zhao (a1) (a2), Z. Zhang (a1), W. Gai (a3) (a4), Y. Du (a4), S. Cao (a1), J. Qiu (a3), Q. Zhao (a1), R. Cheng (a1), X. Zhou (a1), J. Ren (a1), W. Huang (a3), C. Tang (a3), H. Xu (a1) and W. Zhan (a1)...


We present a scheme of electron beam radiography to dynamically diagnose the high energy density (HED) matter in three orthogonal directions simultaneously based on electron Linear Accelerator. The dynamic target information such as, its profile and density could be obtained through imaging the scattered electron beam passing through the target. Using an electron bunch train with flexible time structure, a very high temporal evolution could be achieved. In this proposed scheme, it is possible to obtain 1010 frames/second in one experimental event, and the temporal resolution can go up to 1 ps, spatial resolution to 1 µm. Successful demonstration of this concept will have a major impact for both future inertial confinement fusion science and HED physics research.


Corresponding author

Address correspondence and reprint requests to: Y. Zhao, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China and Argonne National Laboratory, Argonne, IL 60439, USA. E-mail:,


Hide All
Atzeni, S. & Meyer-Ter-vehn, J. (2004). The Physics of Inertial Fusion. USA: Oxford University Press. ISBN: 978-0-19-856264-1.
Beg, F.N., Krushelnick, K., Lichtsteiner, P., Meakins, A., Kennedy, A., Kajumba, N., Burt, G. & Dangor, A.E. (2003). Table-top X-pinch for x-ray radiography. Appl. Phys. Lett. 82, 46024604.
Beg, F.N., Stephens, R.B., Xu, H.-W., Haas, D., Eddinger, S., Tynan, G., Shipton, E., Debono, B. & Wagshal, K. (2006). Compact X-pinch based point x-ray source for phase contrast imaging of inertial confinement fusion capsules. Appl. Phys. Lett. 89, 101502, 3.
Dewald, E.L., Milovich, J.L., Michel, P., Landen, O.L., Kline, J.L., Glenn, S., Jones, O., Kalantar, D.H., Pak, A., Robey, H.F., Kyrala, G.A., Divol, L., Benedetti, L.R., Holder, J., Widmann, K., Moore, A., Schneider, M.B., Döppner, T., Tommasini, R., Bradley, D.K., Bell, P., Ehrlich, B., Thomas, C.A., Shaw, M., Widmayer, C., Callahan, D.A., Meezan, N.B., Town, R.P.J., Hamza, A., Dzenitis, B., Nikroo, A., Moreno, K., Van Wonterghem, B., Mackinnon, A.J., Glenzer, S.H., Macgowan, B.J., Kilkenny, J.D., Edwards, M.J., Atherton, L.J. & Moses, E.I. (2013). Early-time symmetry tuning in the presence of cross-beam energy transfer in ICF Experiments on the National Ignition Facility. PRL 111, 235001, 5.
Edwards, R.D., Sinclair, M.A., Goldsack, T.J., Krushelnick, K., Beg, F.N., Clark, E.L., Dangor, A.E., Najmudin, Z., Tatarakis, M., Walton, B., Zepf, M., Ledingham, K.W.D., Spencer, I., Norreys, P.A., Clarke, R.J., Kodama, R., Toyama, Y. & Tampo, M. (2002). Characterization of a gamma-ray source based on a laser-plasma accelerator with applications to radiography. Appl. Phys. Lett. 80, 21292131.
Fraser, J., Sheffield, R., Gray, E., Giles, P., Springer, R. & Loebs., V. (1987). Photocathodes in accelerator applications. Proc. of the 1987 IEEE Particle Accelerator Conf., pp. 17051709. Washington, DC: IEEE.
Hora, H., Malekynia, B., Ghoranneviss, M., Miley, G.H. & He, X. (2008). Twenty times lower ignition threshold for laser driven fusion using collective effects and the inhibition factor. Appl. Phys. Lett. 93, 011101, 3.
King, N.S.P., Ables, E., Adams, K., Alrick, K.R., Amann, J.F., Balzar, S., Barnes, P.D. Jr., Crow, M.L., Cushing, S.B., Eddleman, J.C., Fife, T.T., Flores, P., Fujino, D., Gallegos, R.A., Gray, N.T., Hartouni, E.P., Hogan, G.E., Holmes, V.H., Jaramillo, S.A., Knudsson, J.N., London, R.K., Lopez, R.R., Mcdonald, T.E., Mcclelland, J.B., Merrill, F.E., Morley, K.B., Morris, C.L., Naivar, F.J., Parker, E.L., Park, H.S., Pazuchanics, P.D., Pillai, C., Riedel, C.M., Sarracino, J.S., Shelley, F.E. JR., Stacy, H.L., Takala, B.E., Thompson, R., Tucker, H.E., Yates, G.J., Ziock, H.-J.& Zumbro, J.D. (1999). An 800-MeV proton radiography facility for dynamic experiments. NIM A 424, 8491.
Li, C.K., Séguin, F.H., Rygg, J.R., Frenje, J.A., Manuel, M., Petrasso, R.D., Betti, R., Delettrez, J., Knauer, J.P., Marshall, F., Meyerhofer, D.D., Shvarts, D., Smalyuk, V.A., Stoeckl, C., Landen, O.L., Town, R.P.J., Back, C.A. & Kilkenny, J.D. (2008). Monoenergetic-proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion. Phys. Rev. Lett. 100, 225001, 4.
Merrill, F.E. (2015). Imaging with penetrating radiation for the study of small dynamic physical processes. Laser Part. Beams 33, 425431.
Merrill, F.E., Campos, E., Espinoza, C., Hogan, G., Hollander, B., Lopez, J., Mariam, F.G., Morley, D., Morris, C.L., Murray, M., Saunders, A., Schwartz, C. & Thompson, T.N. (2011). Magnifying lens for 800 MeV proton radiography. Rev. Sci. Instrum. 82, 103709, 6.
Merrill, F.E., Golubev, A.A., Mariam, F.G., Turtikov, V.I., Varentsov, D. & HEDGEHOB, COLLABORATION (2009). Proton microscopy at fair. AIP Conf. Proc. 1195, 667670.
Merrill, F., Harmon, F., Hunt, A., Mariam, F., Morley, K., Morris, C., Saunders, A. & Schwartz, C. (2007). Electron radiography. Nucl. Instrum. Methods Phys. Res. Sec. B 261, 382386.
Power, J.G. (2010). Overview of photoinjectors. AIP Conf. Proc. 1299, 2028.
Roth, M., Jung, D., Falk, K., Guler, N., Deppert, O., Devlin, M., Favalli, A., Fernandez, J., Gautier, D., Geissel, M., Haight, R., Hamilton, C.E., Hegelich, B.M., Johnson, R.P., Merrill, F., Schaumann, G., Schoenberg, K., Schollmeier, M., Shimada, T., Taddeucci, T., Tybo, J.L., Wagner, F., Wender, S.A., Wilde, C.H. & Wurden, G.A. (2013). Bright laser-driven neutron source based on the relativistic transparency of solids. Phys. Rev. Lett. 110, 044802, 5.
Rygg, J.R., Jones, O.S., Field, J.E., Barrios, M.A., Benedetti, L.R., Collins, G.W., Eder, D.C., Edwards, M.J., Kline, J.L., Kroll, J.J., Landen, O.L., Ma, T., Pak, A., Peterson, J.L., Raman, K., Town, R.P.J. & Bradley, D.K. (2014). 2D X-Ray radiography of imploding capsules at the national ignition facility. Phys. Rev. Lett. 112, 195001, 5.
Schumaker, W., Nakanii, N., Mcguffey, C., Zulick, C., Chyvkov, V., Dollar, F., Habara, H., Kalintchenko, G., Maksimchuk, A., Tanaka, K.A., Thomas, A.G.R., Yanovsky, V. & Krushelnick, K. (2013). Ultrafast electron radiography of magnetic fields in high-intensity laser-solid interactions. Phys. Rev. Lett. 110, 015003, 5.
Sheng, L.N., Zhao, Y.T., Yang, G.J., Wei, T., Jiang, X.G., Zhou, X.M., Cheng, R., Yan, Y., Li, P., Yang, J.C., Yuan, Y.J., Xia, J.W. & Xiao, G.Q. (2014). Heavy-ion radiography facility at the Institute of Modern Physics. Laser Part. Beams 32, 651655.
Tahir, N.A., Stöhlker, T.H., Shutov, A., Lomonosov, I.V., Fortov, V.E., French, M., Nettelmann, N., Redmer, R., Piriz, A.R., Deutsch, C., Zhao, Y., Zhang, P., Xu, H., Xiao, G. & Zhan, W. (2010). Ultrahigh compression of water using intense heavy ion beams: Laboratory planetary physics. New J. Phys. 12, 073022, 17.
Tsai, Y.S. & Whitis, Van (1966). Thick-target bremsstrahlung and target considerations for secondary-particle production by electrons. Phys. Rev. 149, 12481257.
Varentsov, D., Bogdanov, A., Demidov, V.S., Golubev, A.A., Kantsyrev, A., Lang, P.M., Nikolaev, D.N., Markov, N., Natale, F., Shestov, L., Simoniello, P., Smirnov, G.N. & Durante, M. (2013). First biological images with high-energy proton microscopy. Physica Medica 29, 208213.
Zhao, Q., Cao, S., Cheng, R., Shen, X., Zhang, Z., Zhao, Y., Gai, W. & Du, Y. (2015). High energy electron radiography experiment research based on picosencond pulse width bunch. Proc. of LINAC2014, p. 4. MOPP015. doi: 10.13140/2.1.2180.4327.
Zhao, Y., Cheng, R., Wang, Y,, Zhou, X., Lei, Y., Sun, Y., Xu, G., Ren, J., Sheng, L., Zhang, Z. & Xiao, G. (2014). High energy density physics research at IMP, Lanzhou, China. High Power Laser Sci. Eng., 2, e39, 5. doi: 10.1017/hpl.2014.44.


Related content

Powered by UNSILO

High energy electron radiography scheme with high spatial and temporal resolution in three dimension based on a e-LINAC

  • Y. Zhao (a1) (a2), Z. Zhang (a1), W. Gai (a3) (a4), Y. Du (a4), S. Cao (a1), J. Qiu (a3), Q. Zhao (a1), R. Cheng (a1), X. Zhou (a1), J. Ren (a1), W. Huang (a3), C. Tang (a3), H. Xu (a1) and W. Zhan (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.