Skip to main content Accessibility help
×
Home

Generation of runaway electrons and X rays in an inhomogeneous electric field at high gas pressures

  • V.F. Tarasenko (a1) (a2) (a3), E.Kh. Baksht (a1), D.V. Beloplotov (a1) (a2), A.G. Burachenko (a1) (a2), M.I. Lomaev (a1) (a2) and D.A. Sorokin (a1)...

Abstract

Results of experimental studies of the amplitude–temporal characteristics of a runaway electron (RE) beam, as well as breakdown voltage and discharge current with a picosecond time resolution are presented. The maximum pressure, at which a RE beam is detectable, decreases with increasing the voltage rise time. The waveforms of the discharge and RE beam currents are synchronized with those of the voltage pulses. It is shown that the amplitude–temporal characteristics of the RE beam depend on the designs of the gas-filled diode and cathode, as well as the gap length. The mechanism for the generation of REs in atmospheric-pressure gases is analyzed on the basis of the obtained experimental data.

Copyright

Corresponding author

Address correspondence and reprint requests to: D.V. Beloplotov, Institute of High Current Electronics, Russian Academy of Science, Akademichesky Avenue 2/3, Tomsk, 634055, Russia. E-mail: rff.qep.bdim@gmail.com

References

Hide All
Alekseev, S.B., Orlovskii, V.M. & Tarasenko, V.F. (2003). Electron beams formed in a diode filled with air or nitrogen at atmospheric pressure. Tech. Phys. Lett. 29, 411413.
Alekseev, S.B., Orlovskii, V.M., Tarasenko, V.F., Tkachev, A.N. & Yakovlenko, S.I. (2005). Electron beam formation in a gas diode at high pressures. Tech. Phys. 50, 16231627.
Babich, L.P. (2003). High-Energy Phenomena in Electric Discharges in Dense Gases: Theory, Experiment, and Natural Phenomena. Arlington, VA, USA: Published by Futurepast.
Babich, L.P. & Loiko, T.V. (2010). Peculiarities of detecting pulses of runaway electrons and X-rays generated by high-voltage nanosecond discharges in open atmosphere. Plasma Phys. Rep. 36, 263270.
Babich, L.P. & Loiko, T.V. (2015). Whether abnormal energy electrons are being produced in electric discharges in dense gases? J. Exp. Theor. Phys. Lett. 101, 735739.
Baksht, E.Kh., Burachenko, A.G., Erofeev, M.V. & Tarasenko, V.F. (2014). Pulse periodic generation of supershort avalanche electron beams and X-ray emission. Plasma Phys. Rep. 40, 404411.
Baksht, E.Kh., Burachenko, A.G., Kozhevnikov, V.Yu., Kozyrev, A.V., Kostyrya, I.D. & Tarasenko, V.F. (2010). Spectrum of fast electrons in a subnanosecond breakdown of air-filled diodes at atmospheric pressure. J. Phys. D: Appl. Phys. 43, 305201.
Baksht, E.Kh., Burachenko, A.G., Lomaev, M.I., Rybka, D.V. & Tarasenko, V.F. (2008 a). Generation of runaway electron subnanosecond pulses in nitrogen and helium at a voltage of 25 kV across the gap. Tech. Phys. 53, 9398.
Baksht, E.Kh., Lomaev, M.I., Rybka, D.V., Sorokin, D.A. & Tarasenko, V.F. (2008 b). Effect of gas pressure on amplitude and duration of electron beam current in a gas–filled diode. Tech. Phys. 53, 15601564.
Baksht, E.Kh., Tarasenko, V.F., Lomaev, M.I., Rybka, D.V. (2007). Ultrashort electron beams generated on the flat part of a voltage pulse in nitrogen and helium, Tech. Phys. Lett. 33, 373376.
Balzovsky, E.V., Rybka, D.V. & Tarasenko, V.F. (2015). Features of recording the time profile of single picosecond pulses in the real time mode. Instrum. Exp. Tech. 58, 640645.
Beloplotov, D.V., Lomaev, M.I., Sorokin, D.A. & Tarasenko, V.F. (2014 a). Iinitial stage of breakdown of a point-plane gap filled with high pressure nitrogen and SF6 . Atmosp. Ocean. Opt. 27, 324328.
Beloplotov, D.V., Lomaev, M.I., Sorokin, D.A. & Tarasenko, V.F. (2014 b). Diffuse and spark discharges at high overvoltages in high-pressure air, nitrogen, and SF6 . Dev. Appl. Ocean. Eng. 3, 3945.
Burachenko, A.G. & Tarasenko, V.F. (2010). Effect of nitrogen pressure on the energy of runaway electrons generated in a gas diode. Tech. Phys. Lett. 36, 11581194.
Frankel, S., Highland, V., Sloan, T., van Dyck, O. & Wales, W. (1966). Observation of X-rays from spark discharges in a spark chamber. Nucl. Instrum. Methods 44, 345348.
Fursey, G.N. (2005). Field Emission in Vacuum Microelectronics. New York, USA: Published by Plenum.
Ivanov, S.N. (2013). The transition of electrons to continuous acceleration mode at subnanosecond pulsed electric breakdown in high-pressure gases. J. Phys. D: Appl. Phys. 46, 285201.
Kostyrya, I.D., Baksht, E.Kh. & Tarasenko, V.F. (2010). An efficient cathode for generating a super short avalanche electron beams in air at atmospheric pressure. Instrum. Exp. Tech. 53, 545548.
Kostyrya, I.D., Rybka, D.V. & Tarasenko, V.F. (2012). The amplitude and current pulse duration of a supershort avalanche electron beam in air at atmospheric pressure. Instrum. Exp. Tech. 55, 7277.
Kostyrya, I.D. & Tarasenko, V.F. (2004). Formation of a volume discharge in air at atmospheric pressure upon application of nanosecond high-voltage pulses. Rus. Phys. J. 47, 13141316.
Kozyrev, A.V., Kozhevnikov, V.Yu., Vorobyev, M.S., Baksht, E.Kh., Burachenko, A.G., Koval, N.N. & Tarasenko, V.F. (2015). Reconstruction of electron beam energy spectra for vacuum and gas diodes. Laser Part. Beams 33, 183192.
Levko, D., Krasik, Ya.E. & Tarasenko, V.F. (2012). Present status of runaway electron generation in pressurized gases during nanosecond discharges. Int. Rev. Phys. 6, 165195.
Levko, D., Krasik, Ya.E., Tarasenko, V.F., Rybka, D.V. & Burachenko, A.G. (2013). Temporal and spatial structure of runaway electron beam in air at atmospheric pressure. J. Appl. Phys. 113, 196101.
Lomaev, M.I., Beloplotov, D.V., Tarasenko, V.F. & Sorokin, D.A. (2015). The breakdown features of a high-voltage nanosecond discharge initiated with runaway electrons at subnanosecond voltage pulse rise time. IEEE Trans. Dielectr. Electr. Insul. 22, 18331840.
Lomaev, M.I., Rybka, D.V., Sorokin, D.A., Tarasenko, V.F. & Krivonogova, K.Yu. (2009). Radiative characteristics of nitrogen upon excitation by volume discharge initiated by runaway electron beam. Opt. Spectrosc. 107, 3340.
Mesyats, G.A., Korovin, S.D., Sharypov, K.A., Shpak, V.G., Shunailov, S.A. & Yalandin, M.I. (2006). Dynamics of subnanosecond electron beam formation in gas-filled and vacuum diodes. Tech. Phys. Lett. 32, 1822.
Mesyats, G.A., Reutova, A.G., Sharypov, K.A., Shpak, V.G., Shunailov, S.A. & Yalandin, M.I. (2011). On the observed energy of runaway electron beams in air. Laser Part. Beams 29, 425435.
Mesyats, G.A., Sadykova, A.G., Shunailov, S.A., Shpak, V.G. & Yalandin, M.I. (2013). Control and stabilization of runaway electron emission at the delay stage of pulsed breakdown in an overvolted atmospheric gap. IEEE Trans. Plasma Sci. 41, 28632870.
Mesyats, G.A., Shpak, V.G., Shunailov, S.A. & Yalandin, M.I. (2008). Electron source and acceleration regime of a picosecond electron beam in a gas-filled diode with inhomogeneous field. Tech. Phys. Lett. 34, 169173.
Mesyats, G.A., Yalandin, M.I., Reutova, A.G., Sharypov, K.A., Shpak, V.G. & Shunailov, S.A. (2012). Picosecond runaway electron beams in air. Plasma Phys. Rep. 38, 2945.
Rybka, D.V., Tarasenko, V.F., Burachenko, A.G. & Balzovskii, E.V. (2012). The temporal structure of a runaway electron beam generated in air at atmospheric pressure. Tech. Phys. Lett. 38, 657660.
Shao, T., Tarasenko, V.F., Zhang, Ch., Baksht, E.Kh., Yan, P. & Shut'ko, Yu.V. (2012). Repetitive nanosecond-pulse discharge in a highly nonuniform electric field in atmospheric air: X-ray emission and runaway electron generation. Laser Part. Beams 30, 369378.
Shao, T., Tarasenko, V.F., Zhang, Ch., Burachenko, A.G., Rybka, D.V., Kostyrya, I.D., Lomaev, M.I., Baksht, E.Kh. & Yan, P. (2013). Application of dynamic displacement current for diagnostics of subnanosecond breakdowns in an inhomogeneous electric field. Rev. Sci. Instrum. 84, 053506.
Shao, T., Tarasenko, V.F., Yang, W., Beloplotov, D.V., Zhang, Ch., Lomaev, M.I., Yan, P. & Sorokin, D.A. (2014). Spots on electrodes and images of a gap during pulsed discharges in an inhomogeneous electric field at elevated pressures of air, nitrogen and argon. Plasma Sources Sci. Technol. 23, 054018.
Shao, T., Zhang, Ch., Niu, Z., Yan, P., Tarasenko, V.F., Baksht, E.Kh., Kostyrya, I.D. & Shut'ko, Yu.V. (2011). Runaway electron preionized diffuse discharges in atmospheric pressure air with a point-to-plane gap in repetitive pulsed mode. J. Appl. Phys. 109, 083306.
Sharypov, K.A., Ul'masculov, M.R., Shpak, V.G., Shunailov, S.A., Yalandin, M.I., Mesyats, G.A., & Kolomiets, M.D. (2014). Current waveform reconstruction from an explosively emissive cathode at a subnanosecond voltage front. Rev. Sci. Instrum. 85, 125104.
Stankevich, Yu.L., & Kalinin, V.G. (1967). Fast electrons and X-ray radiation during the initial stage of growth of a pulsed spark. Sov. Phys. – Dokl. 12, 10421043.
Tabata, T. & Ito, R. (1975). A generalized empirical equation for the transmission coefficient of electrons. Nucl. Instrum. Methods 127, 429434.
Tarasenko, V.F. (2011). Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air. Plasma Phys. Rep. 37, 409421.
Tarasenko, V.F. (Eds). (2014). Runaway Electron Preionized Diffuse Discharges. New York, USA: Published by Nova Science Publishers, Inc.
Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G. & Erofeev, M.V. (2013 b). Formation of diffuse and spark discharges in non-uniform electric field in elevated pressure gases. High Volt. Eng. 39, 21052111.
Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G., Kostyrya, I.D., Lomaev, M.I., Petin, V.K., Rybka, D.V. & Shlyakhtun, S.V. (2008 c). Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air. Plasma Phys. Rep. 34, 10281036.
Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G., Kostyrya, I.D., Lomaev, M.I. & Rybka, D.V. (2010 a). High-pressure runaway-electron – preionized diffuse discharges in a nonuniform electric field. Tech. Phys. 55, 210218.
Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G., Kostyrya, I.D., Lomaev, M.I. & Rybka, D.V. (2008 a). Generation of supershort avalanche electron beams and formation of diffuse discharges in different gases at high pressure. Plasma Dev. Oper. 16, 267298.
Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G., Kostyrya, I.D., Lomaev, M.I. & Rybka, D.V. (2008b). Supershort avalanche electron beam generation in gases. Laser. Part. Beams 26, 605617.
Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G., Kostyrya, I.D. & Rybka, D.V. (2013 a). Energy of electrons generated during a subnanosecond breakdown in atmospheric-pressure air. Plasma Phys. Rep. 39, 592599.
Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G., Lomaev, M.I., Sorokin, D.A. & Shut'ko, Yu.V. (2010 b). On the initiation of a spark discharge upon the breakdown of nitrogen and air in a nonuniform electric field. Tech. Phys. 55, 904907.
Tarasenko, V.F., Beloplotov, D.V. & Lomaev, M.I. (2015). Dynamics of ionization processes in high-pressure nitrogen, air, and SF6 during a subnanosecond breakdown initiated by runaway electrons. Plasma Phys. Rep. 41, 832846.
Tarasenko, V.F., Burachenko, A.G., Baksht, E.Kh., Kostyrya, I.D., Lomaev, M.I. & Rybka, D.V. (2009). A coaxial chopping gap filled with air at atmospheric pressure with a pulse decay time ≤100 ps. Instrum. Exp. Tech. 52, 366369.
Tarasenko, V.F., Erofeev, M.V., Lomaev, M.I., Sorokin, D.A. & Rybka, D.V. (2012 a). Two component structure of the current pulse of runaway electron beam generated during electron breakdown of elevated pressure nitrogen. Plasma Phys. Rep. 38, 922929.
Tarasenko, V.F., Orlovskii, V.M. & Shunailov, S.A. (2003 a). Forming of an electron beam and a volume discharge in air at atmospheric pressure. Rus. Phys. J. 46, 325327.
Tarasenko, V.F., Rybka, D.V., Burachenko, A.G., Lomaev, M.I. & Balzovsky, E.V. (2012 b). Measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air. Rev. Sci. Instrum. 83, 086106.
Tarasenko, V.F., Shpak, V.G., Shunailov, S.A. & Kostyrya, I.D. (2005). Supershort electron beam from air filled diode at atmospheric pressure. Laser Part. Beams 23, 545551.
Tarasenko, V.F., Yakovlenko, S.I., Orlovskii, V.M., Tkachev, A.N. & Shunailov, C.A. (2003 b). Production of powerful electron beams in dense gases. JETP Lett. 77, 611615.
Tarasova, L.V. & Khudyakova, L.N. (1969). X-Rays from pulsed discharges in air. Sov. Phys. Tech. Phys. 14, 11481150.
Tarasova, L.V., Khudyakova, L.N., Loiko, T.V. & Tsukerman, V.A. (1974). The fast electrons and X-ray radiation of nanosecond pulsed discharges in gases under 0.1–760 Torr. J. Tech. Phys. 44, 564568.
Wilson, C.T.R. (1924). The acceleration of β-particles in strong electric fields such as those of thunderclouds. Proc. Cambr. Philos. Soc. 22, 534538.
Yakovlenko, S.I. (Eds). (2007). Beams of Runaway Electrons and Discharges in Dense Gases, Based on a Wave of Multiplication of Background Electrons. Moscow, Russia: Published by Nauka. [in Russian].
Yalandin, M.I., Reutova, A.G., Sharupov, K.A., Shpak, V.G., Shunailov, S.A., Ul'maculov, M.R., Rostov, V.V. & Mesyats, G.A. (2010). Stability of injection of a subnanosecond high-current electron beam and dynamic effects within its rise time. IEEE Trans. Plasma Sci. 38, 25592564.
Zagulov, F.Ya., Kotov, A.S., Shpak, V.G., Yurike, Ya. Ya. & Yalandin, M.I. (1989). RADAN – small-size pulse-periodic high-current accelerator of electrons. Prib. Tekh. Eksp. 2, 146149.
Zhang, Ch., Tarasenko, V., Gu, J., Baksht, E., Wang, R., Yan, P. & Shao, T. (2015). A comparison between spectra of runaway electron beams in SF6 and air. Phys. Plasmas 22, 123516.
Zhang, Ch., Tarasenko, V.F., Shao, T., Baksht, E.Kh., Burachenko, A.G., Yan, P. & Kostyray, I.D. (2013). Effect of cathode materials on the generation of runaway electron beams and X-rays in atmospheric pressure air. Laser Part. Beams 31, 353364.
Zhang, Ch., Tarasenko, V.F., Shao, T., Beloplotov, D.V., Lomaev, M.I., Sorokin, D.A. & Yan, P. (2014). Generation of supershort avalanche electron beams in SF6. Laser Part. Beams 32, 331341.

Keywords

Related content

Powered by UNSILO

Generation of runaway electrons and X rays in an inhomogeneous electric field at high gas pressures

  • V.F. Tarasenko (a1) (a2) (a3), E.Kh. Baksht (a1), D.V. Beloplotov (a1) (a2), A.G. Burachenko (a1) (a2), M.I. Lomaev (a1) (a2) and D.A. Sorokin (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.