Skip to main content Accessibility help

Features of the generation of fast particles from microstructured targets irradiated by high intensity, picosecond laser pulses

  • M.V. Sedov (a1), A.Ya. Faenov (a2) (a3), A.A. Andreev (a1) (a4) (a5), I.Yu. Skobelev (a2) (a6), S.N. Ryazantsev (a2), T.A. Pikuz (a2) (a7), P. Durey (a8), L. Doehl (a8), D. Farley (a8), C.D. Baird (a8), K.L. Lancaster (a8), C.D. Murphy (a8), N. Booth (a9), C. Spindloe (a9), K.Yu. Platonov (a10), P. McKenna (a11), R. Kodama (a3) (a7), N. Woolsey (a8) and S.A. Pikuz (a2) (a6)...


The use of targets with surface structures for laser-driven particle acceleration has potential to significantly boost the particle and radiation energies because of enhanced laser absorption. We investigate, via experiment and particle-in-cell simulations, the impact of micron-scale surface-structured targets on the spectrum of electrons and protons accelerated by a picosecond laser pulse at relativistic intensity. Our results show that, compared with flat-surfaced targets, structures on this scale give rise to a significant enhancement in particle and radiation emission over a wide range of laser–target interaction parameters. This is due to the longer plasma scale length when using micro-structures on the target front surface. We do not observe an increase in the proton cutoff energy with our microstructured targets, and this is due to the large volume of the relief.


Corresponding author

Author for correspondence: M.V. Sedov, Saint-Petersburg State University, Physical Department, Ulianovskaya st.3, Saint-Petersburg 198504, Russia. E-mail:


Hide All
Andreev, A and Platonov, K (2011) Interaction of intense ultrashort laser pulse with shell target. Optics and Spectroscopy 111, 191199.
Andreev, A, Kumar, N, Platonov, K and Pukhov, A (2011) Efficient generation of fast ions from surface modulated nanostructure targets irradiated by high intensity short-pulse lasers. Physics of Plasmas 18, 103103.
Andreev, A, Platonov, K, Braenzel, J, Lübcke, A, Das, S, Messaoudi, H, Grunwald, R, Gray, C, McGlynn, E and Schnürer, M (2016) Relativistic laser nano-plasmonics for effective fast particle production. Plasma Physics and Controlled Fusion 58, 14038.
Bezzerides, B, Forslund, DW and Lindman, EL (1978) Existence of rarefaction shocks in a laser-plasma corona. Physics of Fluids 21, 2179.
Bin, JH, Ma, WJ, Wang, HY, Streeter, MJV, Kreuzer, C, Kiefer, D, Yeung, M, Cousens, S, Foster, PS, Dromey, B, Yan, XQ, Ramis, R, Meyer-ter-Vehn, J, Zepf, M and Schreiber, J (2015) Ion acceleration using relativistic pulse shaping in near-critical-density plasmas. Physical Review Letters 115, 064801.
Brambrink, E, Schreiber, J, Schlege, T, Audebert, P, Cobble, J, Fuchs, J, Hegelich, M and Roth, M (2006) Transverse characteristics of short-pulse laser-produced ion beams: a study of the acceleration dynamics. Physical Review Letters 96, 154801.
Ceccotti, T, Floquet, V, Sgattoni, A, Bigongiari, A, Klimo, O, Raynaud, , Riconda, MC, Heron, A, Baffigi, F, Labate, L, Gizzi, LA, Vassura, L, Passoni, M, Kveton, M, Novotny, F, Possolt, M, Prokupek, J, Proska, J, Psikal, J and Stolcova, L (2013) Evidence of resonant surface-wave excitation in the relativistic regime through measurements of proton acceleration from grating targets. Physical Review Letters 111, 185001.
Daido, H, Nishiuchi, M and Pirozhkov, AS (2012) Review of laser-driven ion sources and their applications. Reports on Progress in Physics 75, 056401.
Dalui, M, Kundu, M, Trivikram, TM, Rajeev, R, Ray, K and Krishnamurthy, M (2014) Bacterial cells enhance laser driven ion acceleration. Nature Scientific Reports 4, 6002.
Danson, CN, Brummitt, PA, Clarke, RJ, Collier, JL, Fell, B, Frackiewicz, AJ, Hawkes, S, Hernandez-Gomez, C, Holligan, C, Hutchinson, P, Kidd, M, Lester, WJ, Musgrave, IO, Neely, D, Neville, DR, Norreys, PA, Pepler, DA, Reason, CJ, Shaikh, W, Winstone, TB, Wyatt, RWW and Wyborn, BE (2005) Vulcan petawatt: design, operation and interactions at 5×1020 W cm−2. Laser and Particle Beams 23, 8793.
Dover, NP, Palmer, CAJ, Streeter, MJV, Ahmed, H, Albertazzi, B, Borghesi, M, Carroll, , Fuchs, D, Heathcot, R, Hilz, P, Kakolee, K, Kar, FS, Kodama, R, Kon, A, MacLellan, DA, McKenna, P, Nagel, SR, Neely, D, Notley, MM, Nakatsutsumi, M and Najmudin, Z (2016) Buffered high charge spectrally-peaked proton beams in the relativistic-transparency regime. New Journal of Physics 18, 013038.
Ebert, T, Neumann, NW, Abel, T, Schaumann, G and Roth, M (2017) Laser-induced microstructures on silicon for laser-driven acceleration experiments. High Power Laser Science and Engineering 5, e13.
Floquet, V, Klimo, O, Psikal, J, Velyhan, A, Limpouch, J, Proska, J, Novotny, F, Stolcova, L, Macchi, A, Sgattoni, A, Vassura, L, Labate, L, Baffigi, F, Gizzi, LA, Martin, P and Ceccotti, T (2013) Micro-sphere layered targets efficiency in laser driven proton acceleration. Journal of Applied Physics 114, 083305.
Fuchs, J, Antici, P, d'Humières, E, Lefebvre, E, Borghesi, M, Brambrink, E, Cecchetti, CA, Kaluza, M, Malka, V, Manclossi, M, Meyroneinc, S, Mora, P, Schreiber, J, Toncian, T, Pépin, H and Audebert, P (2006) Laser-driven proton scaling laws and new paths towards energy increase. Nature Physics 2, 4854.
Georgobiani, VA, Gonchar, KA, Osminkina, LA and Timoshenko, VY (2015) Structural and photoluminescent properties of nanowires formed by the metal-assisted chemical etching of monocrystalline silicon with different doping level. Semiconductors 49, 10251029.
Germaschewski, K, Fox, W, Abbott, S, Ahmadi, N, Maynard, K, Wang, L, Ruhl, H and Bhattacharjee, A (2016) The Plasma Simulation Code: A modern particle-in-cell code with patch-based load-balancing. Journal of Computational Physics 318, 305326.
Golosov, EV, Ionin, AA, Kolobov, YR, Kudryashov, SI, Ligachev, AE, Makarov, SV, Novoselov, YN, Seleznev, LV, Sinitsyn, DV and Sharipov, AR (2011) Near-threshold femtosecond laser fabrication of one-dimensional subwavelength nanogratings on a graphite surface. Physical Review B 83, 115426.
Higginson, A, Gray, RJ, King, M, Dance, RJ, Williamson, SDR, Butler, NMH, Wilson, R, Capdessus, R, Armstrong, C, Green, JS, Hawkes, SJ, Martin, P, Wei, WQ, Mirfayzi, SR, Yuan, XH, Kar, S, Borghesi, M, Clarke, RJ, Neely, D and McKenna, P (2018) Acceleration of collimated 45 MeV protons by collisionless shocks driven in low-density, large-scale gradient plasmas by a 1020 W/cm2, 1 μm laser. Nature Communications 9, 724.
Ionin, AA, Kudryashov, SI and Samokhin, AA (2017) Material surface ablation produced by ultrashort laser pulses. Physics-Uspekhi 60, 149160.
Ji, LL, Snyder, J, Pukhov, A, Freeman, RR and Akli, KU (2015) Towards manipulating relativistic laser pulses with micro-tube plasma lenses. Nature Scientific Reports 6, 23256.
Jiang, S, Ji, LL, Audesirk, H, George, KM, Snyder, J, Krygier, A, Poole, P, Willis, C, Daskalova, R, Chowdhury, E, Lewis, NS, Schumacher, DW, Pukhov, A, Freeman, RR and Akli, KU (2016) Microengineering laser plasma interactions at relativistic intensities. Physical Review Letters 116, 085002.
Kemp, AJ and Ruhl, H (2005) Multispecies ion acceleration off laser-irradiated water droplets. Physics of Plasmas 12, 033105.
Kim, IJ, Pae, KH, Choi, IW, Lee, CC, Kim, HT, Singhal, H, Sung, JH, Lee, SK, Lee, HW, Nickles, PV, Jeong, TM, Kim, CM and Nam, CH (2016) Radiation pressure acceleration of protons to 93 meV with circularly polarized petawatt laser pulses. Physics of Plasmas 23, 070701.
Klimo, O, Psikal, J, Limpouch, J, Proska, J, Novotny, F, Ceccotti, T, Floquet, V and Kawata, S (2011) Short pulse laser interaction with micro-structured targets: simulations of laser absorption and ion acceleration. New Journal of Physics 13, 053028.
Kulcsar, G, AlMawlawi, D, Budnik, F, Herman, P, Moskovits, M, Zhao, L and Marjoribanks, R (2000) Intense picosecond X-Ray pulses from laser plasmas by use of nanostructured “velvet” targets. Physical Review Letters 84, 5149.
Macchi, A, Borghesi, M and Passoni, M (2013) Ion acceleration by superintense laser-plasma interaction. Reviews of Modern Physics 85, 751.
Margarone, D, Klimo, O, Kim, IJ, Prokůpek, J, Limpouch, J, Jeong, TM, Mocek, T, Pšikal, J, Kim, HT, Proška, J, Nam, KH, Štolcová, L, Choi, IW, Lee, SK, Sung, JH, Yu, TJ and Korn, G (2012) Laser-driven proton acceleration enhancement by nanostructured foils. Physical Review Letters 109, 234801.
Millington, SJ, Carroll, DC and Green, JS (2015) Validity of the analysis of radiochromic film using MATLAB Code. CLF Annual report 2014-15. Oxfordshire: STFC Rutherford Appleton Laboratory.
Mondal, S, Chakraborty, I, Ahmad, S, Carvalho, D, Singh, P, Lad, AD, Narayanan, V, Ayyub, P, Kumar, GR, Zheng, J and Sheng, ZM (2011) Highly enhanced hard X-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses. Physical Review B 83, 35408.
Prencipe, I, Sgattoni, A, Dellasega, D, Fedeli, L, Cialfi, L, Choi, IW, Kim, IJ, Janulewicz, KA, Kakolee, KF and Lee, HW (2016) Development of foam-based layered targets for laser-driven ion beam production. Plasma Physics and Controlled Fusion 58, 034019.
Purvis, MA, Shlyaptsev, VN, Hollinger, R, Bargsten, C, Pukhov, A, Prieto, A, Wang, Y, Luther, BM, Yin, L, Wang, S and Rocca, JJ (2013) Relativistic plasma nanophotonics for ultrahigh energy density physics. Nature Photonics 7, 796800.
Schollmeier, M, Geissel, M, Sefkow, AB and Flippo, KA (2014) Improved spectral data unfolding for radiochromic film imaging spectroscopy of laser-accelerated proton beams. Review of Scientific Instruments 85, 043305.
Spindloe, C, Arthur, G, Hall, F, Tomlinson, S, Potter, R, Kar, S, Green, J, Higginbotham, A, Booth, N and Tolley, MK (2016) High volume fabrication of laser targets using MEMS techniques. Journal of Physics: Conference Series 713, 012002.
Zepf, M, Clark, EL, Beg, FN, Clarke, RJ, Dangor, AE, Gopal, A, Krushelnick, K, Norreys, PA, Tatarakis, M, Wagner, U and Wei, MS (2003) Proton acceleration from high-intensity laser interactions with thin foil targets. Physical Review Letters 90, 064801.
Zigler, A, Eisenman, S, Botton, M, Nahum, E, Schleifer, E, Baspaly, A, Pomerantz, I, Abicht, F, Branzel, J, Priebe, G, Steinke, S, Andreev, A, Schnuerer, M, Sandner, W, Gordon, D, Sprangle, P and Ledingham, KW (2013) Enhanced proton acceleration by an ultrashort laser interaction with structured dynamic plasma targets. Physical Review Letters 110, 215004.


Features of the generation of fast particles from microstructured targets irradiated by high intensity, picosecond laser pulses

  • M.V. Sedov (a1), A.Ya. Faenov (a2) (a3), A.A. Andreev (a1) (a4) (a5), I.Yu. Skobelev (a2) (a6), S.N. Ryazantsev (a2), T.A. Pikuz (a2) (a7), P. Durey (a8), L. Doehl (a8), D. Farley (a8), C.D. Baird (a8), K.L. Lancaster (a8), C.D. Murphy (a8), N. Booth (a9), C. Spindloe (a9), K.Yu. Platonov (a10), P. McKenna (a11), R. Kodama (a3) (a7), N. Woolsey (a8) and S.A. Pikuz (a2) (a6)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed