Skip to main content Accessibility help
×
Home

Extreme laser pulses for non-thermal fusion ignition of hydrogen–boron for clean and low-cost energy

  • Heinrich Hora (a1) (a2), Shalom Eliezer (a3) (a4), George H. Miley (a5), JiaXiang Wang (a6), YanXia Xu (a6) and Noaz Nissim (a3)...

Abstract

After achieving significant research results on laser-driven boron fusion, the essential facts are presented how the classical very low-energy gains of the initially known thermal ignition conditions for fusion of hydrogen (H) with the boron isotope 11 (HB11 fusion) were bridged by nine orders of magnitudes in agreement with experiments. This is possible under extreme non-thermal equilibrium conditions for ignition by >10 PW-ps laser pulses of extreme power and nonlinear conditions. This low-temperature clean and low-cost fusion energy generation is in crucial contrast to local thermal equilibrium conditions with the advantage to avoid the difficulties of the usual problems with extremely high temperatures.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Extreme laser pulses for non-thermal fusion ignition of hydrogen–boron for clean and low-cost energy
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Extreme laser pulses for non-thermal fusion ignition of hydrogen–boron for clean and low-cost energy
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Extreme laser pulses for non-thermal fusion ignition of hydrogen–boron for clean and low-cost energy
      Available formats
      ×

Copyright

Corresponding author

Author for correspondence: Heinrich Hora, University of New South Wales, Sydney 2052, Australia. E-mail: h.hora@UNSW.edu.au

References

Hide All
Badziak, J, Kozlov, AA, Makowski, J, Paris, P, Ryz, L, Wolowski, J, Woryna, E and Vankov, AB (1999) Investigations of ion streams emitted from plasma produced with a high power picosecond laser. Laser and Particle Beams 17, 323329.
Badziak, J, Hora, H, Woryna, E, Jablonski, S, Laska, L, Parys, P, Rohlena, K, and Wolowski, J (2003) Experimental evidence of differnences in properties of fast ion fluxes form short-pulse and long-pulse laser-plasma interaction. Physics Letters A315, 452.
Belyaev, VS, Matafonov, AP, Vinogradov, VI, Krainov, VP, Lisista, VS, Roussetski, AS, Ignatyev, GN and Adrianov, VP (2005) Observation of neutron-less fusion reactions in picosecond laser plasmas. The Physical Review E72, 026406
Bigot, B (2017) “Overall status of the ITER project” in Proceedings of the IEEE SOFE Symposium, Shanghai/China June 2017, pp. 4–8.
Bobin, J-L (1974) Nuclear fusion reactions in fronts propagating in solid DT. In Schwarz, H and Hora, H (eds), Laser Interaction and Related Plasma Phenomena. New York: Plenum Press, Vol. 4B, 465494.
Cang, Y, Osman, F, Hora, H, Zhang, J, Badziak, J, Wolowski, J, Jungwirth, K, Rohlena, K and Ullschmied, J (2005) Computations for nonlinear force driven plasma blocks by picosecond laser pulses for fusion. Journal of Plasma Physics 71, 3551.
Chu, MS (1972) Thermonuclear reactions waves at high densities. Physics of Fluids 15, 412.
Danson, C, Egan, D, Elsmere, S, Girling, M, Arvey, E, Hillier, D, Hoarty, D, Masoero, D, Hussei, S, McLoughlin, J, Parker, S, Penman, R, Sawyer, D, Treadwell, P, Winter, D and Hoppe, N (2018) 400 TW operation of orion at ultrahigh contrast, 3rd HPLSE Symposium Suzhou, Abstracts p.62.
Eliezer, S, Hora, H, Korn, G and Nissim, N and Martinez-Val, JM (2016) Avalanche proton-boron fusion based on elastic nuclear collisions. Physics of Plasmas 23, 050704.
Eliezer, S, Hora, H and Nissim, N (2017) German Patent application 10 2017 010927.3, Clean laser boron fusion without secondary nuclear waste, 29 Nov. 2017.
Földes, I, Bakos, JS, Gal, K, Juhasz, Y, Kedves, MA, Koscis, G, Syatmari, S and Verex, G (2000) Properties of high harmonics generation by UV laser pulses on solid surfaces. Laser Physics 10, 264269.
Fujioka, S, Zhang, Z, Ishihara, K, Shigemori, K, HironakaI, Y, Johazaki, T, Sunahara, A, Yamamoto, N, Nakashima, H, Watanabe, T, Shiraga, H, Nishimura, H and Azechi, H (2013) Kilotesla magnetic field due to a capacitor-coil target driven by high power laser. Nature Scientific Reports 3, 11701176.
Grieger, G and Wendelstein Team (1981) Plasma Physics and Controlled Fusion Research (1980), Proceedings Vl. 1 pp. 173 and 185, see also Chapter 2.6 of Hora (1991).
Hoffmann, DDH, Zhao, YT and Katrick, P (2018) Non-ideal plasma at elastic nuclear collisions for avalanche boron fusion. 3rd HPLSE Symposium Suzhou, Abstracts p.46.
Hora, H (1969) Nonlinear Effects and Non-thermal Plasmas. Physics of Fluids 12, 182.
Hora, H (1981) Physics of Laser Driven Plasmas. New York: Wiley.
Hora, H (1988) Nuclear effects and non thermal plasmas. Nuclear Instruments and Methods A271, 117.
Hora, H (1991) Plasmas at High Temperature and Density. Heidelberg: Springer.
Hora, H (2004) Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser and Particle Beams 22, 439.
Hora, H (2009) Laser fusion with nonlinear force driven plasma blocks: thresholds and dielectric effects. Laser and Particle Beams 27, 207.
Hora, H (2014) Method for generating electrical energy by laser fusion and fusion reactor. Patent PCT/EP2014/003281 world patent WO 2-15/144190 A1 with granting Chinese Patent No. 2905560; Patent No.: ZL 201480077324.3 and US Application 20170125129A1, May 2, 2017. Priority 23.03.2014.
Hora, H (2016) Laser Plasma Physics, 2nd Edn. Bellingam WA: SPIE Books.
Hora, H, Lalousis, P and Eliezer, S (1984) Analysis of the Inverted Double Layers in Nonlinear Force Produced Cavitons at Laser-Plasma Interaction. Physical Review Letters 63, 1650.
Hora, H and Miley, GH (2018) Laser driven plasma blocks for space propulsion. German Patent application 10 2018 001 430.5, Opto-mechanical driven HB11 Space Propulsion 14 Feb 2018.
Hora, H, Badziak, J, Boody, FP, Höpfl, R, Jungwirth, K, Kralikowa, B, Kraska, J, Laska, L, Parys, P, Perina, V, Pfeifer, M, Rohlena, K, Skala, J, Ullschmied, J, Wolowski, J and Woryna, E (2002a) Effects of ps and ns laser pulses for giant ion source. Optics Communications 207, 333.
Hora, H, Peng, H, Zhang, W and Osman, F (2002b) New skin depth interaction by ps-TW laser pulses and consequences for fusion energy. SPIE Proceedings 4914, 37.
Hora, H, Badziak, J, Boody, FP, Höpfl, R, Jungwirth, K, Kralikova, B, Kraska, J, Laska, L, Pfeifer, M, Rohlena, K, Skala, J, Ullschmied, J, Wolowski, J and Woryna, W (2002c) Skin Depth Theory for Nonlinear-Force Driven Block Ignition Laser-ICF Based on Anomalous Picosecond Terawatt Laser Plasma Interaction, Eurpean Conference on Laser Interaction with Matter ECLIM, Mosocw, O.N. Krokhin et al eds., SPIE Conference Proceedings No. 5228, p. 295
Hora, H, Badziak, J, Read, MN, Li, YT, Liang, TJ, Liu, H, Shang, ZM, Zhang, J, Osman, F, Miley, GH, Zhang, WY, He, XT, Peng, HS, Glowacz, S, Jablonski, S, Wolowski, J, Skladanowski, Z, Jungwirth, K, Rohlena, K and Ullschmied, J (2007) Fast ignition by laser driven beams of very high intensity. Physics of Plasmas 14, 072701.
Hora, H, Malekynia, B, Ghoranneviss, M, Miley, GH and He, X (2008) Twenty times lower ignition thresholds for laser driven fusion using collective effects and the inhibition factor. Applied Physics Letters 93, 011101.
Hora, H, Miley, GH, Ghorannviss, M, Malekynia, H, Azizi, N and He, X-T (2010) Fusion energy without radioactivity: laser ignition of solid hydrogen-boron(11) fuel. Energy and Environmental Science 3, 479.
Hora, H, Miley, GH, Yang, X and Lalousis, P (2011) Strong shock-phenomena at petawatt-picosecond lasers. Astrophysics and Space Science 336, 225228.
Hora, H, Korn, G, Giuffrida, L, Margarone, D, Picciotto, A, Krasa, J, Jungwirth, K, Ullschmied, J, Lalousis, P, Eliezer, S, Miley, GH, Moustaizis, S and Mourou, G (2015) Fusion energy using avalanche increased boron reactions for block ignition by ultrahigh power picosecond laser pulses. Laser and Particle Beams 33, 607.
Hora, H, Eliezer, S, Kirchhoff, GJ, Nissim, N, Wang, JX, Lalousis, P, Xu, YX, Miley, GH, Martinez-Val, JM, McKenzie, W and Kirchhoff, J (2017a) Road Map to Clean Energy Using Laser Beam Ignition of Boron-Hydrogen Fusion. Laser and Particle Beams 35, 730.
Hora, H, Eliezer, S, Nissim, N and Lalousis, P (2017b) Non-thermal laser driven plasma-blocks for proton boron avalanche fusion as direct drive option. Matter and Radiation at Extremes (Elsevier) 2, 177189.
Hora, HG, Korn Eliezer, S, Nissim, N, Lalousis, P, Giuffrida, L, Margarone, D, Picciotto, A, Miley, GH, Moustaizis, S, Martinez-Val, J-M, Barty, CPJ and Kirchhoff, GJ (2017c) Avalanche Boron Fusion by Laser Picosecond Block Ignition with Magnetic Trapping for Clean and Economic Reactor. High Power Laser Science and Engineering 4, e35.
Hora, H, Eliezer, S, Wang, JX, Korn, G, Nissim, N, Xu, YX, Lalousis, P, Kirchhoff, KJ and Miley, GH (2018) Laser Boron Fusion Reactor with Picosecond Petawatt Block Ignition. IEEE Transactions on Plasma Science 46, 1191.
Hurricane, OA, Callahan, DA, Casey, DT, Celliers, PM, Cerjan, C, Dewald, EL, Dittrich, TR, Döppner, T, Hinkel, DE, Berzak, LF, Hopkins, LFB, Kline, JL, Le Pape, S, Ma, T, MacPhee, AG, Milovich, JL, Pak, A, Park, H-S, Patel, PK, Remington, BA, Salomonson, JD, Springer, PT and Tommasini, R (2014) Fuel gain exceeding unity in an inertial confined fusion implosion. Nature 506, 343.
Krasa, J, Klir, D, Velyhan, A, Margarone, D, Krousky, E, Jungwirth, K, Skala, J, Pfeiffer, M, Kravarik, J, Kubes, P, Rezac, K and Ullschmied, J (2013) Observation of repetitive bursts in emission of fast ions and neutrons in sub-nanoseconds laser-solid experiments. Laser and Particle Beams 31, 395.
Labaune, C, Deprierraux, S, Goyon, S, Loisel, C, Yahia, G and Rafelski, J (2013) Fusion reactions initiated by laser accelerated particle beams in laser produced plasmas. Nature Communications 4, 2506.
Lalousis, P and Hora, H (1983) First direct electron and ion fluid computation of high electrostatic fields in dense inhomogeneous plasmas with subsequent nonlinear laser interaction. Laser and Particle Beams 1, 283304.
Lalousis, P, Hora, H, Eliezer, S, Martinez-Val, JM, Moustaizis, S, Miley, GH and Mourou, G (2013) Shock mechanisms by ultrahigh laser accelerated plasma blocks in solid density targets for fusion. Physics Letters A 377, 885888.
Laska, L, Jungwirth, K, Kralikova, B, Kraska, J, Pfeifer, M, Rohlena, K, Skala, J, Ullschmied, J, Basziak, J, Parys, P, Wolowski, J, Woryna, E, Gammino, S, Torrisi, L, Boody, FB and Hora, H (2003) Generation of multiply charged ions at low and high laser-power densities. Plasma Physics and Controlled fusion 45, 585599.
Margarone, D, Korn, G, Picciotto, A and Bellutti, P (2013) Laser fusion system and method. European Patent application EP 2833365 A2, Priority 13.07.2013.
Margarone, D, Picciotto, A, Velyhan, A, Krasa, J, Kucharik, M, Mangione, A, Szydlowsky, A, Malinowska, A, Bertuccio, G, Shi, Y, Crivellari, M, Ullschmied, J, Bellutti, P and Korn, G (2015) Advanced scheme for high-yield laser driven nuclear reactions. Plasma Physics and Controlled Fusion 57, 014030.
Norreys, PA, Fews, AP, Beg, FN, Bell, AR, Dangor, DA, Lee, P, Neslon, MB, Schmidt, H, Tatarakis, M and Cable, MD (1998) Neutron production from picosecond laser irradiation of deuterated targets at intensities of 1019 W/cm2. Plasma Physics and Controlled Fusion 40, 175.
Osman, F, Cang, Y, Hora, H, Cao, L, Liu, H, He, X, Badziak, J, Parys, AB, Wolowski, J, Woryna, E, Jungwirth, K, Kralikova, B, Kraska, J, Laska, L, Pfeifer, M, Rohlena, K, Skala, J, Ullschmied, J (2004) Skin depth plasma front interaction mechanisms with prepulse suppression to avoid relativistic self-focusing for high-gain laser fusion. Laser and Particle Beams 22, 83.
Picciotto, A, Margarone, D, Velyhan, A, Bellini, P, Krasa, J, Szydlowski, A, Bertuccio, G, Shi, Y, Margarone, A, Prokupek, J, Malinowska, A, Krouski, E, Ullschmied, J, Laska, L, Kucharik, M and Korn, G (2014) Boron-proton nuclear-fusion enhancement induced in boron-doped silicon targets by low contrast pulsed laser. The Physical Review X, 4.
Sauerbrey, R (1996) Acceleration of femtosecond laser produced plasmas. Physics of Plasmas 3, 4712.
Strickland, D and Mourou, G (1985) Compression of amplified chirped optical pulses. Optics Communications 65, 219.
Wolowski, J, Badziak, J, Boody, FB, Hora, H, Hnatowicz, V, Jungwirth, K, Kraska, J, Laska, L, Parys, P, Perina, V, Pfeifer, M, Rohlena, K, Ryc, L, Ullschmied, J and Woryna, E (2003) Fast ion emission from the plasma produced by the PALS laser system. Plasma Physics and Controlled Fusion 44, 1277.
Xu, YX, Wang, JX, Qi, M, Li, Y, Xing, Y and Long, L (2016) Improving the quality of proton beams via double targets driven by an intense circularly polarized laser pulse. AIP Advances 6, 105304.
Xu, YX, Wang, JX, Hora, H, Yifan, XQ, Yang, XK and Zhu, WJ (2018) Plasma Block acceleration based upon the interaction between double targets and an ultra-intense linearly polarized laser pulse. Physics of Plasmas 25, b 043102.
Zhang, J (2018) Plenary Announcement about the Initiative of Chinese Academy of Science for Fusion with ps Laser Pulses of Extreme Power, 12 April 2018 at 3rd HPLSE Symposium Suzhou/China
Zhang, M, He, JT, Chen, DB, Li, ZH, Zhang, Y, Wang, L, Feng, BL, Zhang, DF, Tang, XW and Zhang, J (1998) Effects of a prepulse on γ-ray radiation produced by a femtosecond laser with only 5-mJ energy. Physical Review E 57, 3745.
Zhou, J (2018) Opening presentation of Mini-Workshop at 3rd High Power Laser Science and Engineering Symposium at Suzhou/China on 12 April.

Keywords

Extreme laser pulses for non-thermal fusion ignition of hydrogen–boron for clean and low-cost energy

  • Heinrich Hora (a1) (a2), Shalom Eliezer (a3) (a4), George H. Miley (a5), JiaXiang Wang (a6), YanXia Xu (a6) and Noaz Nissim (a3)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed