Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-05T23:48:51.334Z Has data issue: false hasContentIssue false

Experimental verification of a low-impedance transit-time oscillator without foils

Published online by Cambridge University Press:  25 September 2012

Yibing Cao
Affiliation:
College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, People's Republic of China
Juntao He*
Affiliation:
College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, People's Republic of China
Jiande Zhang
Affiliation:
College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, People's Republic of China
Junpu Ling
Affiliation:
College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, People's Republic of China
*
Address correspondence and reprint requests to: Juntao He, College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, People's Republic of China. E-mail: hjt0731@163.com

Abstract

The low-impedance transit-time oscillator without foils is a new high-power microwave generator. In a previous report, a radiation power of 2.7 GW at 1.64 GHz has been achieved and the corresponding power conversion efficiency is 18.75%. Recently, the further experiments are continued in our laboratory. By increasing the cathode-anode gap properly, the operating voltage of device is enhanced to about 628 kV, and the corresponding radiation power reaches 3.6 GW. The device efficiency approaches 23%. In the newest experiments, because of the higher power level, the radiation power has been obviously influenced by RF breakdown in the vicinity of the dielectric window. By using a plastic bag filled with sulfur-hexafluoride (SF6), such an influence can be minimized.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adam, L., Anders, L., Hans, B. & Mats, L. (2007). 45 GW pulsed-power generator. 16th IEEE International Pulsed Power Conference, 1272–1275.Google Scholar
Anton, A.E., Sergei, D.K., Vladislav, V.R., Igor, V.P., Gennady, A.M., Sergei, N.R., Valery, G.S., Michael, I.Y. & Naum, S.G. (2003). Production of short microwave pulses with a peak power exceeding the driving electron beam power. Laser Part. Beams 21, 187196.Google Scholar
Arman, M.J. (1996). Radial acceletron, a new low-impedance HPM source. IEEE Trans. Plasma Sci. 24, 964969.CrossRefGoogle Scholar
Bandurkin, I.V. & Savilov, A.V. (2011). Super-radiant Cherenkov backward-wave oscillator with cyclotron absorption. Appl. Phys. Lett. 99, 193506.CrossRefGoogle Scholar
Barker, R.J. & Schamiloglu, E. (2001). High-Power Microwave Sources and Technologies. New York: IEEE.CrossRefGoogle Scholar
Booske, J.H. (2008). Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generation. Phys. Plasmas 15, 055502.CrossRefGoogle Scholar
Bugaev, S.P., Cherepenin, V.A., Kanavets, V.I., Klimov, A.I., Kopenkin, A.D., Koshelev, V.I., Popov, V.A. & Slepkov, A.I. (1990). Relativistic multiwave cerenkov generators. IEEE Trans. Plasma Sci. 18, 525536.CrossRefGoogle Scholar
Cao, Y.B., Zhang, J.D. & He, J.T. (2009). A low-impedance transit-time oscillator without foils. Phys. Plasmas 16, 083102.CrossRefGoogle Scholar
Cao, Y.B., He, J.T. & Zhang, J.D. (2012). High power microwave generation from the low-impedance transit-time oscillator without foils. Phys. Plasmas 19, 072106.CrossRefGoogle Scholar
Fan, Y.W., Zhong, H.H., Li, Z.Q., Shu, T., Zhang, J.D., Zhang, J., Zhang, X.P., Yang, J.H. & Luo, L. (2007). A double-band high-power microwave source. J. Appl. Phys. 102, 103304.CrossRefGoogle Scholar
Fan, Z., Liu, Q., Chen, D., Tan, J. & Zhou, H. (2004). Theoretical and experimental researches on C-band three-cavity transit-time effect oscillator. Sci. China Ser. G 47, 310329.CrossRefGoogle Scholar
Ge, X.J., Zhong, H.H., Qian, B.L., Zhang, J., Gao, L., Jin, Z.X., Fan, Y.W. & Yang, J.H. (2010). An L-band coaxial relativistic backward wave oscillator with mechanical frequency tunability. Appl. Phys. Lett. 97, 101503.CrossRefGoogle Scholar
Hahn, K., Fuks, M.I. & Schamiloglu, E. (2002). Initial studies of a long-pulse relativistic backward-wave oscillator utilizing a disk cathode. IEEE Trans. Plasma Sci. 30, 11121119.CrossRefGoogle Scholar
He, J.T., Cao, Y.B., Zhang, J.D. & Ling, J.P. (2012). Effects of intense relativistic electron beam on the microwave generation in a foil-less low-impedance transit-time oscillator. IEEE Trans. Plasma Sci. 40, 16221631.CrossRefGoogle Scholar
He, J.T., Cao, Y.B., Zhang, J.D., Wang, T. & Ling, J.P. (2011). Design of a dual-frequency high-power microwave generator. Laser Part. Beams 29, 479485.CrossRefGoogle Scholar
He, J.T., Zhong, H.H. & Liu, Y.G. (2004). A new low-impedance high power microwave source. Chin. Phys. Lett. 21, 11111113.Google Scholar
Konoplev, I.V., Cross, A.W., MacInnes, P., He, W., Whyte, C.G., Phelps, A.D.R., Robertson, C.W., Ronald, K. & Young, A.R. (2006). High-current oversized annular electron beam formation for high-power microwave research. Appl. Phys. Lett. 89, 171503.CrossRefGoogle Scholar
Korovin, S.D., Kurkan, I.K., Loginov, S.V., Pegel, I.V., Polevin, S.D., Volkov, S.N. & Zherlitsyn, A.A. (2003). Decimeter-band frequency-tunable sources of high-power microwave pulses. Laser Part. Beams 21, 175185.CrossRefGoogle Scholar
Krile, J.T., Neuber, A.A., Krompholz, H.G. & Gibson, T.L. (2006). Monte Carlo simulation of high power microwave window breakdown at atmospheric conditions. Appl. Phys. Lett. 89, 201501.CrossRefGoogle Scholar
Kuo, S.P. & Zhang, Y.S. (1991). A theoretical model for intense microwave pulse propagation in an air breakdown environment. Phys. Fluids B 3, 29062912.CrossRefGoogle Scholar
Kuo, S.P., Zhang, Y.S. & Kossey, P. (1990). Propagation of high power microwave pulses in air breakdown environment. J. Appl. Phys. 67, 27622766.CrossRefGoogle Scholar
Levine, J.S. & Harteneck, B.D. (1994). Repetitively pulsed relativistic klystron amplifier. Appl. Phys. Lett. 65, 21332135.CrossRefGoogle Scholar
Li, G.L., Shu, T., Yuan, C.W., Zhu, J., Liu, J., Wang, B. & Zhang, J. (2010). Simultaneous operation of X band gigawatt level high power microwaves. Laser Part. Beams 28, 3544.CrossRefGoogle Scholar
Liu, G.Z., Liu, J.Y., Huang, W.H., Zhou, J.S., Song, X.X. & Ning, H. (2000). A study of high power microwave air breakdown. Chin. Phys. 9, 757763.Google Scholar
Liu, J.L., Cheng, X.B., Qian, B.L., Ge, B., Zhang, J.D. & Wang, X.X. (2009). Study on strip spiral Blumlein line for the pulsed forming line of intense electron-beam accelerators. Laser Part. Beams 27, 95102.CrossRefGoogle Scholar
Liu, J.L., Li, C.L., Zhang, J.D., Li, S.Z. & Wang, X.X. (2006). A spiral strip transformer type electron-beam accelerator. Laser Part. Beams 24, 355358.CrossRefGoogle Scholar
Liu, J.L., Yin, Y., Ge, B., Zhan, T.W., Cheng, X.B., Feng, J.H., Shu, T., Zhang, J.D. & Wang, X.X. (2007 a). An electron-beam accelerator based on spiral water PFL. Laser Part. Beams 25, 593599.CrossRefGoogle Scholar
Liu, J.L., Zhan, T.W., Zhang, J., Liu, Z.X., Feng, J.H., Shu, T., Zhang, J.D. & Wang, X.X. (2007 b). A Tesla pulse transformer for spiral water pulse forming line charging. Laser Part. Beams 25, 305312.CrossRefGoogle Scholar
Nam, S.K., Lim, C. & Verboncoeur, J.P. (2009). Dielectric window breakdown in oxygen gas: Global model and particle-in-cell approach. Phys. Plasmas 16, 023501.CrossRefGoogle Scholar
Ouyang, J., Liu, Y.G., Liu, J.L., Wang, M.X. & Feng, J.H. (2008). Research on a Folded Blumlein Line Using Kapton Film as Dielectrics. Plasma Sci. Technol. 10, 231234.Google Scholar
Roy, A., Menon, R., Mitra, S., Kumar, S., Sharma, V. & Nagesh, K.V. (2009). Plasma expansion and fast gap closure in a high power electron beam diode. Phys. Plasmas 16, 053103.CrossRefGoogle Scholar
Serlin, V. & Friedman, M. (1994). Development and optimization of the RKA. IEEE Trans. Plasma Sci. 22, 692700.CrossRefGoogle Scholar
Shkvarunets, A.G., Carmel, Y., Nusinovich, G.S., Abu-elfadl, T.M., Rodgers, J., Antonsen, T.M. Jr., & Granatstein, V. (2002). Realization of high efficiency in a plasma-assisted microwave source with two-dimensional electron motion. Phys. Plasmas 9, 41144117.CrossRefGoogle Scholar
Teng, Y., Liu, G., Shao, H. & Tang, C. (2009). A new reflector designed for efficiency enhancement of CRBWO. IEEE Trans. Plasma Sci. 37, 10621068.CrossRefGoogle Scholar
Woo, W. & Degroot, J.S. (1984). Microwave absorption and plasma heating due to microwave breakdown in the atmosphere. Phys. Fluids 27, 475487.CrossRefGoogle Scholar
Xiao, R.Z., Chen, C.H., Sun, J., Zhang, X.W & Zhang, L.J. (2011). A high-power high-efficiency klystron-like relativistic backward wave oscillator with a dual-cavity extractor. Appl. Phys. Lett. 98, 101502.Google Scholar
Xiao, R.Z., Chen, C.H., Zhang, X.W. & Sun, J. (2009). Efficiency enhancement of a high power microwave generator based on a relativistic backward wave oscillator with a resonant reflector. J. Appl. Phys. 105, 053306.CrossRefGoogle Scholar
Xiao, R.Z., Zhang, X.W., Zhang, L.J., Li, X.Z., Zhang, L.G., Song, W., Hu, Y.M., Sun, J., Huo, S.F., Chen, C.H., Zhang, Q.Y. & Liu, G.Z. (2010). Efficient generation of multi-gigawatt power by a klystron-like relativistic backward wave oscillator. Laser Part. Beams 28, 505511.CrossRefGoogle Scholar
Yang, W. & Ding, W. (2005). Studies of a low-impedance coaxial split-cavity oscillator. Phys. Plasmas 12, 063105.CrossRefGoogle Scholar
Yatsui, K., Shimiya, K., Masugata, K., Shigeta, M. & Shibata, K. (2005). Characteristics of pulsed power generator by versatile inductive voltage adder. Laser Part. Beams 23, 573581.CrossRefGoogle Scholar
Zhang, J., Jin, Z.X., Yang, J.H., Zhong, H.H., Shu, T., Zhang, J.D., Qian, B.L., Yuan, C.W., Li, Z.Q., Fan, Y.W., Zhou, S.Y. & Xu, L.R. (2011). Recent advance in long-pulse HPM sources with repetitive operation in S-, C-, and X-bands. IEEE Trans. Plasma Sci. 39, 14381445.CrossRefGoogle Scholar
Zhang, J., Zhong, H.H. & Luo, L. (2004). A novel overmoded slow-wave high-power microwave (HPM) generator. IEEE Trans. Plasma Sci. 32, 22362242.CrossRefGoogle Scholar
Zhang, Q., Yuan, C.W. & Liu, L. (2010). Design of a dual-band power combining architecture for high-power microwave applications. Laser Part. Beams 28, 377385.CrossRefGoogle Scholar
Zhang, Y.H., Chang, A.B., Xiang, F., Song, F.L., Kang, Q., Luo, M., Li, M.J. & Gong, S.G. (2007). Repetition rate of intense current electron-beam diodes using 20 GW pulsed source. Acta Phys. Sin. 56, 57545757.CrossRefGoogle Scholar
Zou, X.B., Liu, R., Zeng, N.G., Han, M., Yuan, J.Q., Wang, X.X. & Zhang, G.X. (2006). A pulsed power generator for x-pinch experiments. Laser Part. Beams 24, 503509.CrossRefGoogle Scholar