Skip to main content Accessibility help

Enhanced laser ion acceleration with a multi-layer foam target assembly

  • E. Yazdani (a1), R. Sadighi-Bonabi (a2), H. Afarideh (a1), J. Yazdanpanah (a2) and H. Hora (a3)...


Interaction of a linearly polarized Gaussian laser pulse (at relativistic intensity of 2.0 × 1020 Wcm−2) with a multi-layer foam (as a near critical density target) attached to a solid layer is investigated by using two-dimensional particle-in-cell simulation. It is found that electrons with longitudinal momentum exceeding the free electrons limit of meca02/2 so-called super-hot electrons can be produced when the direct laser acceleration regime is fulfilled and benefited from self-focusing inside of the subcritical plasma. These electrons penetrate easily through the target and can enhance greatly the sheath field at the rear, resulting in a significant increase in the maximum energy of protons in target normal sheath acceleration regime. The results indicate that the maximum proton energy is enhanced by 2.7 times via using an assembled target arrangement compared to a bare solid target. Furthermore, by demonstration of this assembly, the maximum proton energy is improved beyond the optimum amount achieved by a two-layer target proposed by Sgattoni et al. (2012).


Corresponding author

Address correspondence and reprint requests to: R. Sadighi-Bonabi, Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran, Iran. E-mail:; or Hossein-Afarideh, Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran. E-mail:


Hide All
Borghesi, M., Fuchs, J., Bulanov, S.V., Mackinnon, A.J., Patel, P.K. & Roth, M. (2006). Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fusion Sci. Technol. 49, 412.
Borghesi, M., Toncian, T., Fuchs, J., Cecchetti, C.A., Romagnani, L., Kar, S., Quinn, K., Ramakrishna, B., Wilson, P.A., Antici, P., Audebert, P., Brambrink, E., Pipahl, A., Jung, R., Amin, M., Willi, O., Larke, R.J., Notley, M., Mora, P., Grismayer, T., D'humières, E. & Sentoku, Y. (2009). Laser-driven proton acceleration and applications: Recent results. EPJST 175, 105.
Bulanov, S.S., Brantov, A., Bychenkov, V.Yu., Chvykov, V. , Kalinchenko, G., Matsuoka, T., Rousseau, P., Reed, S., Yanovsky, V., Litzenberg, D.W., Krushelnick, K. & Maksimchuk, A. (2008). Accelerating monoenergetic protons from ultrathin foils by flat-top laser pulses in the directed-Coulomb-explosion regime. Phys. Rev. E 78, 026412.
Bulanov, S.S., Bychenkov, V.Y, Chvykov, V., Kalinchenko, G., Litzenberg, D.W., Matsuoka, T., Thomas, A.G.R., Willingale, L., Yanovsky, V., Krushelnick, K. & Maksimchuk, A. (2010). Generation of GeV protons from 1 PW laser interaction with near critical density targets. Phys. Plasmas 17, 0431052010.
Ceccotti, T., Floquet, V., Sgattoni, A., Bigongiari, A., Raynaud, M., Riconda, C., Heron, A., Baffigi, F., Labate, L., Gizzi, L.A., Vassura, L., Fuchs, J., Passoni, M., Kveton, M., Novotny, F., Possolt, M., Prokupek, J., Proska, J., Psikal, J., Stolcova, L., Velyhan, A., Bougeard, M., D'oliveira, P., Tcherbakoff, O., Reau, F., Martin, P. & Macchi, A. (2013). Evidence of resonant surface-wave excitation in the relativistic regime through measurements of proton acceleration from grating targets. Phys. Rev. Lett. 111, 185001.
Daido, H., Nishiuchi, M. & Pirozhkov, A.S. (2012). Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 75, 056401.
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003.
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy, F. & Malka, V. (2004). A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541544.
Gahn, C., Tsakiris, G.D., Pukhov, A., Meyer-Ter-Vehn, J., Pretzler, G., Thirolf, P., Habs, D. & Witte, K.J. (1999). Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels. Phys. Rev. Lett. 83, 4772.
Gaillard, S.A., Kluge, T., Flippo, K.A., Bussmann, M., Gall, B., Lockard, T., Geissel, M.Offermann, D.T., Schollmeier, M., Sentoku, Y. & Cowan, T.E. (2011). Increased laser-accelerated proton energies via direct laser-light-pressure acceleration of electrons in micro-cone targets. Phys. Plasmas 18, 056710.
Geddes, C.G.R., Toth, CS., Tilborg, J.Van., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wake field accelerator using plasma-channel guiding. Nature 431, 538541.
Gonoskov, A.A., Korzhimanov, A.V., Eremin, V.I., Kim, A.V. & Sergeev, A.M. (2009). Multicascade proton acceleration by a superintense laser pulse in the regime of relativistically induced slab transparency. Phys. Rev. Lett. 102, 184801.
Hatchett, S.P., Brown, C.G., Cowan, T.E., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, R.W., Mackinnon, A.J., Pennington, D.M., Perry, M.D., Phillips, T.W., Roth, M., Sangster, T.C., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C. & Yasuike, K. (2000). Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 7, 2076.
Hegelich, B.M., Albright, B.J., Cobble, J., Flippo, K., Letzring, S., Paffett, M., Ruhl, H., Schreiber, J., Schulze, R.K. & Fernández, J.C. (2006). Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439, 441444.
Henig, A., Kiefer, D., Geissler, M., Rykovanov, S.G., Ramis, R., Hörlein, R., Osterhoff, J., Major, Z.S., Veisz, L., Karsch, S., Krausz, F., Habs, D. & Schreiber, J. (2009). Laser-driven shock acceleration of ion beams from spherical mass-limited targets. Phys. Rev. Lett. 102, 095002.
Hora, H., Sadighi-Bonabi, R., Yazdani, E., Afarideh, H., Nafari, F. & Ghorannevis, M. (2012). Effect of quantum correction on the acceleration and delayed heating of plasma blocks. Phys. Rev. E 85, 036404.
Hora, H. (1975). Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65, 882.
Hora, H. (1973). Relativistic oscillation of charged particles in laser fields and pair production. Nature Phys. Sci. 243, 34.
Jung, D., Yin, L., Gautier, D.C., Wu, H.C., Letzring, S., Dromey, B., Shah, R., Palaniyappan, S., Shimada, T., Johnson, R.P., Schreiber, J., Habs, D., Fernández, J.C., Hegelich, B.M. & Albright, B.J. (2013). Laser-driven 1 GeV carbon ions from preheated diamond targets in the break-out afterburner regime. Phys. Plasmas 20, 083103.
Limpouch, J., Psikal, J., Andreev, A.A., Platonov, K.Yu. & Kawata, S. (2008). Enhanced laser ion acceleration from mass-limited targets. Laser Part. Beams 26, 225.
Mackinnon, A.J., Sentoku, Y., Patel, P.K., Price, D.W., Hatchett, S., Key, M.H., Andersen, C., Snavely, R. & Freeman, R.R. (2002). Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses. Phys. Rev. Lett. 88, 215006.
Malka, V., Fritzler, S., Lefebvre, Erik, D'humieres, E., Ferrand, R., Grillon, G., Albaret, C., Meyroneinc, S., Chambaret, J.P., Antonetti, A. & Hulin, D. (2004). Practicability of proton therapy using compact laser systems. D. Med. Phys. 31, 1587.
Margarone, D., Klimo, O., Kim, I.J., Prokupek, J., Limpouch, J., Jeong, T.M., Mocek, T., Psikal, J., Kim, H.T., Proska, J., Hnam, K., Stolcova, L., Choi, I.W., Lee, S.K., Sung, J.H., Yu, T.J. & Korn, G. (2012). Laser-driven proton acceleration enhancement by nanostructured foils. Phys. Rev. Lett. 109, 234801.
Nakamura, T., Tampo, M., Kodama, R., Bulanovs, V. & Kando, M. (2010). Interaction of high contrast laser pulse with foam-attached target. Phys. Plasmas 17, 113107.
Nikzad, L., Sadighi-Bonabi, R., Riazi, Z., Mohammadi, M. & Heydarian, F. (2012). Simulation of enhanced characteristic x rays from a 40-MeV electron beam laser accelerated in plasma. Phys. Rev. ST Accel. Beams 15, 021301.
Pukhov, A., Sheng, Z.-M. & Meyer-Ter-Vehn, T. (1999). Particle acceleration in relativistic laser channels. J. Phys. Plasmas 6, 2847.
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436.
Sadighi-Bonabi, R. & Moshkelgosha, M. (2011). Self-focusing up to the incident laser wavelength by an appropriate density ramp. Laser Part. Beams 29, 453.
Sadighi-Bonabi, R. & Rahmatollahpur, S.H. (2010). Potential and energy of the monoenergetic electrons in an alternative ellipsoid bubble model. Phy. Rev. A. 81, 023408.
Sadighi-Bonabi, R., Hora, H., Riazi, Z., Yazdani, E. & Sadighi, S.K. (2010). Generation of plasma blocks accelerated by nonlinear forces from ultraviolet KrF laser pulses for fast ignition. Laser Part. Beams 28, 101.
Sgattoni, A., Londrillo, P., Macchi, A. & Passoni, M. (2012). Laser ion acceleration using a solid target coupled with a low-density layer. Phys. Rev. E 85, 036405.
Shirozhan, M., Moshkelgosha, M. & Sadighi-Bonabi, R. (2014). The effects of circularly polarized laser pulse on generated electron nanobunches in oscillating mirror model. Laser Part. Beams (in press).
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., Mackinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from Petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 2945.
Sylla, F., Flacco, A., Kahaly, S., Veltcheva, M., Lifschitz, A., Malka, V., D'humieres, E., Andriyash, I. & Tikhonchuk, V. (2013). Short intense laser pulse COLLAPSE in near-critical plasma. Phys. Rev. Lett. 110, 085001.
Wang, H.Y., Lin, C., Sheng, Z.M., Liu, B., Zhao, S., Guo, Z.Y., Lu, Y.R., He, X.T., Chen, J.E., & Yan, X.Q. (2011). Laser shaping of a relativistic intense, short gaussian pulse by a plasma lens. Phys. Rev. Lett. 107, 265002.
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 1383.
Willingale, L., Nilson, P.M., Thomas, A.G.R., Bulanov, S.S., Maksimchuk, A., Nazarov, W., Sangster, T.C., Stoeckl, C. & Krushelnick, K. (2011). High-power, kilojoule laser interactions with near-critical density plasma. Phys. Plasmas 18, 056706.
Yazdani, E., Cang, Y., Sadighi-Bonabi, R., Hora, H. & Osman, F.H. (2009). Layers from initial Rayleigh density profile by directed nonlinear force driven plasma blocks for alternative fast ignition. Laser Part. Beams 27, 149.
Yazdanpanah, J. & Anvari, A. (2014). Effects of initially energetic electrons on relativistic laser-driven electron plasma waves. Phys. Plasmas 21, 023101.
Yu, Wei., Bychenkov, V., Sentoku, Y., Yu, M.Y., Sheng, Z.M. & Mima, K. (2000). Electron acceleration by a short relativistic laser pulse at the front of solid targets. Phys. Rev. Lett. 85, 570.
Zani, A., Dellasega, D., Russo, V. & Passoni, M. (2013). Ultra-low density carbon foams produced by pulsed laser deposition. Carbon 56, 358365.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed