Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-31T01:27:44.883Z Has data issue: false hasContentIssue false

Effect of target atomic number on laser induced ablation pressure scaling

Published online by Cambridge University Press:  09 March 2009

T. S. Shirsat
Affiliation:
Laser Division, Bhabha Atomic Research Centre, Bombay-400085 India
H. D. Parab
Affiliation:
Theoretical Physics Division, Bhabha Atomic Research Centre Bombay-400085 India
H. C. Pant
Affiliation:
Laser Division, Bhabha Atomic Research Centre, Bombay-400085 India

Abstract

Laser induced ablation pressure as a function of absorbed laser intensity for low and moderate atomic number targets has been experimentally determined using a 1·06-μm laser at an irradiance of 5 × 1011 to 1 × 1013 W cm−2. Ablation pressure variations with the absorbed laser intensity indicate a transition from a self-regulating ablation to a deflagration scaling for low atomic targets. The experimental results have also been corroborated with theoretical models and a two dimensional hydrodynamic code.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bobin, J. L. 1971 Phys. Fluids, 14, 2341.CrossRefGoogle Scholar
Braginskii, S. T. 1965 Rev. Plasma Phys., Vol. 1. (Consultants Bureau New York) 205.Google Scholar
Caruso, A. & Gratton, R. 1968 Plasma Phys, 10, 867.CrossRefGoogle Scholar
Caruso, A. et al. 1971 Phys. Lett., 35, A 279.CrossRefGoogle Scholar
Christiansen, J. P. & Winsor, N. K. 1979 Comp. Phys. Comm. 17, 397.CrossRefGoogle Scholar
Christiansen, J. P. & Winsor, N. K. 1980 J. Comp. Phys., 35, 291.CrossRefGoogle Scholar
Courant, R. & Friedricks, K. O. 1961 Super Sonic Flow and Shock Waves (Interscience Publishers Ltd London) 380.Google Scholar
Eidmann, K. et al. 1984 Phy. Rev., A30, 2568.CrossRefGoogle Scholar
Fabbro, R. et al. 1985 Phys. Fluids, 28, 1463.CrossRefGoogle Scholar
Ginzburg, V. L. 1964 The Propagation of Electromagnetic Waves in Plasmas (Pergamon, New York) 213.Google Scholar
Grun, J. et al. 1983 Phys. Fluids, 26, 588.CrossRefGoogle Scholar
Key, M. H. et al. 1983 Phys. Fluids, 26, 2011.CrossRefGoogle Scholar
Kidder, R. E. 1974 Nucl. Fusion, 14, 797.CrossRefGoogle Scholar
Manheimer, W. M. & Colombant, D. G. 1982 Phys. Fluids, 25, 1644.CrossRefGoogle Scholar
Max, C. 1982 Physics of Laser Fusion, Vol. 1 Lawrence Livermore Laboratory Report UCRL 53107.Google Scholar
Mora, P. 1982 Phys. Fluids, 25, 1644.CrossRefGoogle Scholar
Nuckolls, J. H. et al. 1972 Nature (London), 239, 139.Google Scholar
Pant, H. C. et al. 1980 Appl. Physics, 23, 183.CrossRefGoogle Scholar
Pert, G. J. 1974 Plasma Physics, 16, 1019.CrossRefGoogle Scholar
Puell, H. 1970 Naturforsch., 25, 1807.Google Scholar
Resnick, R. & Halliday, D.Physics 1978 (Wiley, New York) Vol. 1, 178.Google Scholar
Ripin, B. H. et al. 1980 Phys. Fluids, 23, 1012.CrossRefGoogle Scholar
Sigel, R. 1977 Journal DE Physique, 38, C6C35.Google Scholar
Shirsat, T. S. et al. 1986 Pramana—J. Phys., 27, 701.CrossRefGoogle Scholar