Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T12:10:16.684Z Has data issue: false hasContentIssue false

Dynamics of photo-ablated carbon plasma in an inert gas atmosphere

Published online by Cambridge University Press:  16 October 2009

T. Kerdja
Affiliation:
Laboratoire d'Interaction Laser-Matière, Centre de Développement des Téchnologie Avancées, 128, chemin Mohamed Gacem, El-Madania, Alger, Algèrie
S. Abdelli
Affiliation:
Laboratoire d'Interaction Laser-Matière, Centre de Développement des Téchnologie Avancées, 128, chemin Mohamed Gacem, El-Madania, Alger, Algèrie
E. H. Amara
Affiliation:
Laboratoire des Lasers et Applications, Centre de Développement des Téchnologie Avancées, 128, chemin Mohamed Gacem, El-Madania, Alger, Algèrie
D. Ghobrini
Affiliation:
Laboratoire d'Interaction Laser-Matière, Centre de Développement des Téchnologie Avancées, 128, chemin Mohamed Gacem, El-Madania, Alger, Algèrie
M. Si-Bachir
Affiliation:
Laboratoire d'Interaction Laser-Matière, Centre de Développement des Téchnologie Avancées, 128, chemin Mohamed Gacem, El-Madania, Alger, Algèrie
S. Malek
Affiliation:
Laboratoire d'Interaction Laser-Matière, Centre de Développement des Téchnologie Avancées, 128, chemin Mohamed Gacem, El-Madania, Alger, Algèrie

Abstract

Time and space-resolved emission spectroscopy measurements were performed to investigate plasma dynamics during laser evaporation of a graphite target in an ambient inert atmosphere. Intense molecular emission is found to occur behind a front separating the plasma from the foreign gas. Two stages of expansion are found and are well described, using a viscous drag force model for the first one and a delayed ideal blast wave model for the second. The vibrational temperature estimated using the Swan band in helium at different pressures is presented.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bleekrode, R. & Nieuwpoort, W.C. 1965 J. Chem. Phys. 43, 19.CrossRefGoogle Scholar
Chai, Y. et al. 1991 J. Phys. C 95, 7564.Google Scholar
Gaydon, A.G. & Wolfhard, H.G. 1950 Proc. Roy. Soc. (London) A 201, 561.Google Scholar
Geohegan, D.B. 1992 Appl. Phys. Lett. 60, 2732.Google Scholar
Goldsmith, J.E.M. & Kearsley, D.T.B. 1990 Appl. Phys. B 50, 5.CrossRefGoogle Scholar
Gonzalo, A.A. et al. 1995 J. Appl. Phys. 77, 6588.CrossRefGoogle Scholar
Gu, H.P. et al. 1994 Appl. Phys. B 58, 143.CrossRefGoogle Scholar
Guiliani, J.L. Jr. & Mulbrando, M. 1989 Phys. Fluids B 1, 1463.CrossRefGoogle Scholar
Hermann, J. et al. 1995 J. Appl. Phys. 77, 2928.CrossRefGoogle Scholar
Kerdja, T. et al. 1996 J. Appl. Phys. (in press).Google Scholar
Kwork, H.S. 1992 Thin Solid Films 218, 277.Google Scholar
Mitzer, R. et al. 1993 Appl. Surf. Sci. 69, 180.CrossRefGoogle Scholar
Sakeek, H.F. et al. 1994 J. Appl. Phys. 75, 1140.Google Scholar
Timmer, C. et al. 1991 J. Appl. Phys. 70, 1888.Google Scholar
Witanachchi, S. & Mukherjee, P. 1995 J. Appl. Phys. 78, 4099.CrossRefGoogle Scholar
Wu, X.D. et al. 1989 Appl. Phys. Lett. 54, 179.Google Scholar